Detection of fetal cells in transcervical samples using X22 marker

Editor—The presence of trophoblastic cells in the endocervical canal of pregnant women between 5 and 13-15 weeks of gestation has been repeatedly confirmed.1,2 Using fluorescence in situ hybridisation (FISH) or the polymerase chain reaction (PCR) assay, chromosome Y derived sequences have been detected in transcervical cells (TCCs) retrieved from mothers with male fetuses. Although small tandem repeats (STRs) and quantitative fluorescent PCR (QF-PCR) have also been used to monitor the presence in TCC samples of fetal DNA sequences inherited from the father and absent in the mothers,1,3 the direct and unequivocal demonstration of trophoblastic cells derived from female fetuses has been hampered by the unavailability of highly polymorphic markers specific for the X and Y chromosomes.

In this pilot study, we have assessed the diagnostic value of using a new X/Y chromosome marker, X22,4 for the detection of trophoblastic cellular elements released into the endocervical canal by female fetuses. After receiving verbal consent, samples were retrieved by cervical mucus aspiration1 from four pregnant women, at about 10 weeks of gestation, before termination of pregnancy. Maternal peripheral blood and chorionic tissues were also collected. Aliquots of TCC samples were suspended in phosphate buffered saline (PBS) and analysed under an inverted microscope in order to isolate clumps of cells with the morphological characteristics of syncytial or cytotrophoblastic cellular elements.

DNA extracted from chorionic tissue, individual clumps of TCC cells, and maternal blood samples, was then tested using single or multiplex QF-PCR assay and STRs specific for chromosomes 21, 18, and 13 besides the amelogenin (AMXY) and hypoxantine-guanine-phosphoribosyl transferase (HPRT) markers for sexing.5 All samples were tested with the highly polymorphic X22 pentanucleotide (AAATA) repeat that maps in the PAR2 region of homologous chromosomes.

Table 1: Maternal blood, CVS, and TCC samples tested by QF-PCR with X22 and other STR markers. All the mixed (fetal + maternal) clumps have skewed fluorescent peak ratios between the STRs alleles.

Sample	AMXY	X22	HPRT	D21S1411	D13S634	D18S386	Comments
-----------------	------	-----	------	----------	---------	=========	---------------------
HW (mat blood)	XX	223	284	282	474-488	352-376	
CVS	XX	218-223	276-284	282	474-482	350-376	
TCC clumps 1,2,5,6	XX	223	284	282	474-488	352-376	
TCC clumps 3,4	XX	218-223	276-284	282	474-482	350-376	
P G (mat blood)	XX	223	284	282	474-482	372	
CVS	XX	203-228	284-288	290-298	478-482	372	Maternal
TCC clumps 1,3	XX	223-233	284-288	290	466-478	372-376	Fetal
TCC clamp 2	XX	203-228-223	284-288	290-298	466-478	372-376	Fetal + maternal
TCC clamp 4	XX	203-228	284-288	290	466-478	372-376	Fetal
from these clumps can be used for the prenatal diagnosis of inherited single gene disorders. The X22 pentanucleotide repeat is also of diagnostic value for the detection of cells present in maternal blood derived from female fetuses.

M ADINOLFI
V CIRIGLIANO

Galton Laboratory, University College London, 4 Stephenson Way, London NW1 3HE, UK

Correspondence to:
Professor Adinolfi, matteo@galton.ucl.ac.uk

Figure 1 (A) Electrophoretogram of maternal, CVS, and TCC clump tested with X22, AMXY, and HPRT markers and other autosomal STRs (see text). (B) Electrophoretogram of maternal, CVS, and TCC clump tested with X22 and HPRT markers.

Detection of fetal cells in transcervical samples using X22 marker

M ADINOLFI and V CIRIGLIANO

J Med Genet 2000 37: e1
doi: 10.1136/jmg.37.5.e1

Updated information and services can be found at:
http://jmg.bmj.com/content/37/5/e1

These include:

References
This article cites 6 articles, 1 of which you can access for free at:
http://jmg.bmj.com/content/37/5/e1#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
- Reproductive medicine (519)
- Genetic screening / counselling (886)
- Molecular genetics (1254)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/