An evaluation of needs of female BRCA1 and BRCA2 carriers undergoing genetic counselling

Kelly A Metcalfe, Alexander Liede, Elizabeth Hoodfar, Adrienne Scott, William D Foulkes, Steven A Narod

Abstract

Background—The discovery of the breast and ovarian cancer susceptibility genes BRCA1 and BRCA2 has improved our ability to counsel women at increased risk of developing breast and ovarian cancer. The objective of our study was to identify the needs of women who have undergone genetic counselling and testing for BRCA1/2 and to determine the impact of receiving a positive BRCA1/2 result. This is the first study to report on a large group of women who have received positive BRCA1/2 mutation results.

Methods—Questionnaires were distributed to 105 women who had received pre- and post-test genetic counselling for a positive BRCA1/2 result at the University of Toronto or at McGill University in Montreal, Canada between the years of 1994 and 1998. The questionnaire items included patient motivation for seeking genetic services, information needs, screening and prophylactic surgery practices, satisfaction with access to services and support, the desire for a support group, and overall client satisfaction.

Results—Seventy nine female carriers were surveyed. The majority of the respondents (77%) were satisfied with the information they received during the genetic counselling process. Women with a previous diagnosis of cancer indicated that they needed more information relating to cancer treatment compared to women without cancer (p=0.05). Nineteen percent of the women felt they needed more support than was received. Fifty eight percent of the women reported that their screening practices had changed since they received their result. Young women (below the age of 50) and women with no previous diagnosis of cancer were most likely to have changed their screening practices. Nearly two thirds of the respondents said they had considered prophylactic surgery of the breasts or ovaries. Twenty eight percent of the women had undergone prophylactic mastectomy and 54% had undergone prophylactic oophorectomy. Women with an educational level of high school or more were more likely to have undergone prophylactic bilateral mastectomy than those with less education (p=0.07) but were less likely to undergo prophylactic oophorectomy (p=0.0007).

Conclusion—These findings have a direct impact on the counselling and risk management of female BRCA1 mutation carriers. Age, education, and a previous diagnosis of cancer are important determinants in a woman’s decision making after receiving positive genetic test results.

Keywords: genetic counselling; BRCA1; BRCA2; cancer genetics

The discovery of the breast and ovarian cancer susceptibility genes BRCA1 and BRCA2 makes it possible to counsel a subgroup of women at increased risk of developing breast and ovarian cancer.1–2 These advances prompted the establishment of cancer genetics clinics in North America and western Europe, which provide genetic counselling and molecular testing to at risk subjects. The estimated risk of developing breast cancer associated with a BRCA1 or BRCA2 mutation is 56% to 80% up to the age of 70 and the risk of developing ovarian cancer ranges from 16% to 40% by the age of 70.1–4

To date, little is known about the impact of genetic testing on women who receive a result indicating that they carry one of the high risk mutations. Areas of interest include surveillance behaviour, information needs, psychological adjustment and distress, and emotional responses. Based on experience from other adult onset conditions (such as Huntington’s disease), concern has been raised about possible adverse psychological effects of BRCA genetic testing, particularly for women who receive a positive result. This concern has prompted a number of investigators to study predictors of adverse psychological effects and potential means of minimising them.5–14 Biesecker et al found that common reactions to a positive result included disbelief, anger, despair, relief, and ecstasy. Lerman et al studied patient outcomes associated with BRCA1 testing and concluded that some high risk subjects may benefit psychologically if extensive counselling is provided from the onset of the testing process. These studies suggest that with appropriate counselling, women are better able to deal with positive test results.

One of the goals of health care professionals who provide genetic counselling and genetic testing for hereditary breast and ovarian cancer is to promote cancer prevention practices. To achieve this goal, high risk subjects are presented with options including screening and prophylactic surgery. However, numerous studies have shown that behavioural change is

Centre for Research in Women’s Health, University of Toronto, 790 Bay Street, Suite 750A, Toronto, Ontario M5G 1N8, Canada
K A Metcalfe
A Liede
E Hoodfar
S A Narod
Division of Medical Genetics, Department of Medicine, McGill University, Montreal, Quebec H3G 1A4, Canada
A Scott
W D Foulkes
Correspondence to: Dr Narod, narod@itn.net

Revised version received 26 May 2000
Accepted for publication 5 June 2000
not easily achieved.

Lerman et al. found

BRCA mutation carriers to be reluctant to

adopt new surveillance and prevention prac-

tices and concluded that genetic testing may

not lead to anticipated reductions in cancer

morbidity or mortality.

The experience of patients undergoing

genetic counselling and testing for breast

cancer has been examined.

Most studies are

based on hypothetical scenarios about anti-

ipated feelings and behaviour among clients

before undergoing genetic testing. However,

when women are told that they actually carry a

BRCA1/2 mutation, their attitude and deci-

sions about screening and preventive surgery

may be different. There have been three family

based studies to date that present data on men

and women who received test results.

Lynch et al. described reactions to disclosure

of test results from 14 families with 78 BRCA

mutation carrier males and females. This

descriptive study found that over one third of

those who tested positive reported anger,

sadness, or guilt. Smith et al. described the

experience and psychological distress of 87

male and 125 female members of one family

who underwent predictive BRCA testing,

including 47 females who were determined to

be BRCA mutation carriers. At one to two

weeks follow up, the study measured greater

distress for female carriers who were the first to

be tested and those whose tested sibs were

non-carriers. Wagner et al. recently reported

findings on 35 BRCA families and 90 family

members in Austria, both carriers and non-

carriers, and concluded that carrier status was

not associated with increased depression symp-

toms in mutation carriers.

We have conducted a large survey on women

who tested positive for a BRCA1 or BRCA2

mutation. The purpose of this study is to

determine their level of satisfaction with the

genetic counselling and testing process, and to

identify unmet needs of female BRCA muta-

tion carriers.

Methods

STUDY POPULATION

Eligible subjects were identified from familial

breast cancer clinics at the Women's College

Hospital, University of Toronto and McGill

University, Montreal. Patients received

BRCA1/2 mutation results between November

Eligible subjects included women who had

received genetic counselling and testing and

were found to have a mutation in BRCA1 or

BRCA2. One hundred and seven eligible

subjects were identified from 70 families. All

women had received full pre-test and post-test

genetic counselling. Of 107 eligible women,

two were excluded because of language and

comprehension barriers. Questionnaires were

mailed out between June 1998 and December

1998. Of the total 79 respondents, 52 received

genetic counselling and testing services at the

Women's College Hospital in Toronto, 17 at

the McGill University hospital clinics in Mon-

treal, and 10 were counselled at other centres in

Canada and the USA with testing done in

Toronto. The respondents included 46 women

affected with cancer and 33 unaffected women.

Two respondents resided in the United States.

GENETIC COUNSELLING SERVICES

Gene testing services are at the Women's

College Hospital of the University of Toronto

and at McGill University Hospitals comprise

appointments with a genetic counsellor and

either a geneticist or oncologist. Genetic testing

is offered as part of a research programme at

these institutions. Patients are usually referred

to the genetics clinic by other health care pro-

fessionals, such as oncologists and general

practitioners. The clients include subjects both

affected and unaffected with cancer. Patients at

the familial cancer programmes are uniformly

provided with a minimum of one pre-test

counselling session and one test disclosure

counselling session (median=two sessions).

The number of counselling sessions provided is

not dependent on the client's cancer status.

Comprehensive information about all available

management options for the consultand and

their relatives are discussed, including screen-

ning, prophylactic surgery, and chemopreven-

tion. Genetic counsellors are responsible for

arranging referrals to other specialists for con-

sultation and disclosure counselling session.

The programmes have

identified local and regional health care

specialists, knowledgeable about the unique

needs of BRCA mutation carriers. Many of

these patients participate in other research

projects and trials. Table 1 summarises the

standard procedures at these familial cancer

clinics, similar to procedures at other research

facilities in North America.

Men and women at these familial cancer

programmes are provided with a minimum of

one pre-test counselling session and one

counselling session.

PROCEDURES

All study procedures have been approved by

the Institutional Review Boards of Women's

College Hospital and Montreal General, Royal

Victoria and Jewish General Hospitals in Mon-

treal. Eligible women received a letter explain-

ing the study, an invitation to participate, a

consent form, and a questionnaire. If the

woman wished to participate, she returned the

completed questionnaire to the investigators.

Women who did not return their questionnaire

were reminded with a telephone call and

offered participation. Fifteen women opted to

complete the questionnaire by telephone inter-

view.

QUESTIONNAIRE DESIGN

The questionnaire consisted of 37 items

assessing patients’ motivations for seeking

genetic services, information needs, screening

and prophylactic surgery practices, access to

services (that is, health care referrals), support

resources, desire for a support group, and

overall satisfaction. Participants were given the

option of obtaining further follow up with the

genetic counsellors. A separate questionnaire

was included with the first 20 mailings to vali-

date the appropriateness of the items for
assessing patient’s needs using the items identified. These questionnaires are available upon request.

ANALYSIS

Patients were divided into those with no previous diagnosis of cancer and those with a previous diagnosis of cancer. Education levels were divided into high school graduation and less or greater than high school. Age was analysed as both a continuous and categorical variable. When analysed as a categorical variable, age was divided into less than 50 years and greater than 50 years of age. Pearson’s chi-square test was used for nominal data and Student t tests and Mann-Whitney tests were used for comparison of continuous variables. Logistic regression was used for multivariate modelling. The significance level was set at 0.05, two sided.

Results

A total of 105 eligible women from 70 different families were mailed a questionnaire, including 71 women from the University of Toronto and 34 from McGill University. The women were white and of French-Canadian, Ashkenazi Jewish, European, or Hispanic ethnicity. Sixty four questionnaires were returned by mail and 15 were completed by telephone. Analysis was performed on a total of 79 completed questionnaires (17 from McGill and 62 from the University of Toronto).

There were 26 non-respondents (24.8% of questionnaires mailed). Seven women declined to participate (via returned consent form indicating refusal to participate) and 19 women did not respond to the invitation to participate in this study. The mean age of the non-respondents was 52.6 years (range 39 to 65 years), compared to 50.4 years in respondents (range 24 to 81 years) (p=0.41). Seventy seven percent of the non-respondents had a previous diagnosis of cancer, whereas 58% of the respondents had a personal history of cancer. The average level of education for the respondents was some college or university, 11% had less than high school education, and 14% had a postgraduate degree. The education level for non-respondents was not known.

Table 1 Genetic counselling services at the Women’s College Hospital in Toronto and McGill University

<table>
<thead>
<tr>
<th>Contents of action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referral</td>
</tr>
<tr>
<td>Referral by self, physician, family member, or from research programme</td>
</tr>
<tr>
<td>Family history is obtained by phone or via mailed questionnaire</td>
</tr>
<tr>
<td>Appointment 1</td>
</tr>
<tr>
<td>Genetic counsellor and geneticist or oncologist</td>
</tr>
<tr>
<td>Draft of pedigree is reviewed with patient</td>
</tr>
<tr>
<td>Procedure of familial cancer clinic explained</td>
</tr>
<tr>
<td>Expectations and limitations of DNA testing in research programme explained</td>
</tr>
<tr>
<td>Management options are discussed if patient is found to be at high risk</td>
</tr>
<tr>
<td>Appointment 1 or 2: pre-test</td>
</tr>
<tr>
<td>Family history is confirmed by pathology obtained</td>
</tr>
<tr>
<td>Objective risk assessment is provided (based on Claus model)</td>
</tr>
<tr>
<td>Possible adverse complications of DNA testing discussed (eg, insurance)</td>
</tr>
<tr>
<td>Blood is drawn with appropriate consent</td>
</tr>
<tr>
<td>Appointment 2 or 3: disclosure</td>
</tr>
<tr>
<td>Face to face disclosure of test results</td>
</tr>
<tr>
<td>Possible family implications are discussed</td>
</tr>
<tr>
<td>Screening and prophylactic treatment options are discussed</td>
</tr>
<tr>
<td>Referrals to specialists</td>
</tr>
<tr>
<td>Written referrals to specialists (eg, gynaecologist)</td>
</tr>
<tr>
<td>Follow up</td>
</tr>
<tr>
<td>By appointment (offered after 3 months of disclosure)</td>
</tr>
<tr>
<td>By phone</td>
</tr>
</tbody>
</table>

Table 2 Sources of referral to genetic services (n=79)

<table>
<thead>
<tr>
<th>Source of referral</th>
<th>No</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self</td>
<td>12</td>
<td>15.2</td>
</tr>
<tr>
<td>Friend</td>
<td>1</td>
<td>1.3</td>
</tr>
<tr>
<td>Family member</td>
<td>35</td>
<td>44.3</td>
</tr>
<tr>
<td>Canadian Cancer Society</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Family doctor</td>
<td>3</td>
<td>3.8</td>
</tr>
<tr>
<td>Gynaecologist</td>
<td>4</td>
<td>5.1</td>
</tr>
<tr>
<td>Oncologist</td>
<td>9</td>
<td>11.4</td>
</tr>
<tr>
<td>Other</td>
<td>15</td>
<td>19</td>
</tr>
</tbody>
</table>

Table 2 summarises the sources of referral. Forty four percent of respondents were referred to a genetics clinic by a family member. Fifteen percent were self-referred and 11% were referred by an oncologist. Forty three percent of respondents belonged to a family with a known BRCA1/2 mutation. Of these, 62% (21/34) were referred by family members.

Fifty eight percent of respondents had a previous diagnosis of cancer. Of these, thirty seven had unilateral breast cancer, three had bilateral breast cancer, and six had ovarian cancer. Other reported cancers were colon, uterine, melanoma, and cervical cancers. The median year of cancer diagnosis was 1990 (range 1961 to 1998). The mean number of breast cancer cases in the families in first or second degree relatives was 3.0 (range 0-7) and the mean number of deaths from breast cancer was 1.1 (range 0-5). The mean number of ovarian cancer cases in the families was 1.2 (range 0-3) and the mean number of deaths from ovarian cancer was 1.0 (range 0-3).

The mean time between respondents receiving mutation results and completing the questionnaire was 17.3 months.

The top three reasons for seeking genetic services were “to learn about personal risk of cancer” (34.2%), “to learn about children’s risk of cancer” (16.5%), and “to learn about family’s risk of cancer” (11.4%) (table 3). Among women with children, personal risk was still cited as the principal reason for undergoing genetic testing.

Open ended questions were used to assess the patients’ emotional responses to their positive mutation test result. When asked to describe initial feelings upon receiving BRCA1/2 results, responses included: “not surprised”, “relieved”, “angry”, “sad”, “devastated”,...
“shocked”, “concerned about children”, and “guilty for passing gene on to my daughters”. These responses were all cited by multiple respondents. Subjects were also asked if feelings and emotions had changed since first learning about being a carrier of BRCA1/2. Responses given by more than one woman included: “I now realise what it really means to have the gene”, “I am more realistic about the future”, and “I am more concerned about how my children will be affected”.

INFORMATION NEEDS
Seventy seven percent of women (59/77) were satisfied with the information they received during genetic counselling. Twenty one percent (16/77) said there was additional information that they would have liked, but did not receive, including information on cancer treatment. This included information on preventive surgery, chemoprevention, and new screening modalities (for example, MRI). In the study sample there were no significant differences in information needs based on age or education (table 4), but there was a significant difference by cancer status. Women affected with cancer were more likely to state that there was information they needed but did not receive at the result disclosure session than were unaffected women (p=0.05). There were no differences in information needs based on centre (Toronto v Montreal) (p=0.40). There were also no differences in information needs based on the time since the subject had received a positive mutation result (p=0.95).

Twenty eight percent of women felt they had not received enough information about prophylactic surgery during their genetic counselling sessions. Eighteen percent of the respondents felt they did not receive enough information about cancer screening during their genetic counselling sessions. There were no significant differences in need for information about prophylactic surgery or screening based on education, age, or cancer status (table 4).

The great majority of women (95%) shared the information they received, including their test result, with other family members. One third of the women indicated that the experience of genetic testing had affected either family or personal relationships. There was a significant difference in this response based on whether the woman was the proband or has another family member who received predictive testing (p=0.02). Probands were more likely to state that their personal or family relationships had been altered as a result of the testing process. Of the 26 women who had indicated that their family relationships had changed as a consequence of the genetic testing, two did not indicate how these had changed. Twelve stated that their family relationships were strengthened by this information: “we value each day more and each other”; “(genetic testing) has brought the issue to the surface to be discussed openly and honestly”; “(I am) not waiting to do things any more with my kids”. Twelve women stated that genetic testing had a negative impact on their family or personal relationships: “my husband is even more distant”; “my daughter is more with my kids”. Twelve women stated that genetic testing had a negative impact on their family or personal relationships: “my husband is even more distant”; “my daughter is more with my kids”.

SUPPORT RESOURCES
The genetic counsellor was cited as the most frequent source of psychosocial support, followed by a family member and spouse (table 5). The genetic counsellor is the primary contact for each woman in the genetics clinics. This may explain the importance of the genetic counsellor in providing psychosocial support. The majority of women (84%) did not want help or support in sharing the genetic information (their test result) with their family. Nearly one third of women (23/76) would have liked their families to have been more involved in the genetic testing process.

Nineteen percent of women felt they needed more support than was received. There were no significant differences in whether women required more support according to cancer status, age, or education. Half (39/77) of the women said they were interested in being referred to another health care professional after they had received their test result. The most common request was for a gynaecologist (22/39), followed by a breast specialist (7/39). When asked if they were successful in obtaining the referral, 74.4% said yes.

Participants were asked about the need for a support group for BRCA1/2 mutation carriers and about their desire to participate in one. Over two thirds (68.4%) felt a support group was necessary for BRCA1 mutation carriers, but only 34.2% said they wished to participate. Women with an educational level beyond high
school without a previous diagnosis of cancer were more likely to be interested in taking part in a support group than those with less education (p=0.009) or without cancer (p=0.034).

Table 4 Patient needs and outcomes measured

<table>
<thead>
<tr>
<th>Needs assessed</th>
<th>Variable</th>
<th>Response “yes” (%)</th>
<th>p value</th>
<th>Adjusted p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information needs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Needed more information</td>
<td>Age: <50 y</td>
<td>17.5</td>
<td>0.39</td>
<td>0.87*</td>
</tr>
<tr>
<td></td>
<td>Age: ≥50 y</td>
<td>25.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Education: high school</td>
<td>12.5</td>
<td>0.20</td>
<td>0.25†</td>
</tr>
<tr>
<td></td>
<td>Education: high school</td>
<td>25.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer status: cancer</td>
<td>28.9</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer status: no cancer</td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Needed more information about screening</td>
<td>Age: <50 y</td>
<td>87.5</td>
<td>0.21</td>
<td>0.28*</td>
</tr>
<tr>
<td></td>
<td>Age: ≥50 y</td>
<td>76.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Education: high school</td>
<td>88.0</td>
<td>0.37</td>
<td>0.24†</td>
</tr>
<tr>
<td></td>
<td>Education: high school</td>
<td>79.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer status: cancer</td>
<td>81.0</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer status: no cancer</td>
<td>84.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Needed more information about prophylactic surgery</td>
<td>Age: <50 y</td>
<td>71.8</td>
<td>0.316</td>
<td>0.69*</td>
</tr>
<tr>
<td></td>
<td>Age: ≥50 y</td>
<td>75.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Education: high school</td>
<td>86.4</td>
<td>0.09</td>
<td>0.16†</td>
</tr>
<tr>
<td></td>
<td>Education: high school</td>
<td>67.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer status: cancer</td>
<td>75.0</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer status: no cancer</td>
<td>71.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Needed more support</td>
<td>Age: <50 y</td>
<td>25.6</td>
<td>0.11</td>
<td>0.22*</td>
</tr>
<tr>
<td></td>
<td>Age: ≥50 y</td>
<td>11.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Education: high school</td>
<td>20.8</td>
<td>0.62</td>
<td>0.99†</td>
</tr>
<tr>
<td></td>
<td>Education: high school</td>
<td>16.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer status: cancer</td>
<td>19.6</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer status: no cancer</td>
<td>18.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opinion that a support group is necessary for carriers</td>
<td>Age: <50 y</td>
<td>77.5</td>
<td>0.45</td>
<td>0.29*</td>
</tr>
<tr>
<td></td>
<td>Age: ≥50 y</td>
<td>69.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Education: high school</td>
<td>75.5</td>
<td>0.67</td>
<td>0.97†</td>
</tr>
<tr>
<td></td>
<td>Education: high school</td>
<td>70.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer status: cancer</td>
<td>71.4</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer status: no cancer</td>
<td>77.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal interest in a support group</td>
<td>Age: <50 y</td>
<td>46.1</td>
<td>0.17</td>
<td>0.10*</td>
</tr>
<tr>
<td></td>
<td>Age: ≥50 y</td>
<td>30.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Education: high school</td>
<td>50.0</td>
<td>0.0089</td>
<td>0.046†</td>
</tr>
<tr>
<td></td>
<td>Education: high school</td>
<td>17.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer status: cancer</td>
<td>28.2</td>
<td>0.034</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer status: no cancer</td>
<td>53.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5 Sources of support (n=74) *

<table>
<thead>
<tr>
<th>Source</th>
<th>No</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doctor (eg, oncologist, family doctor, etc)</td>
<td>17</td>
<td>23</td>
</tr>
<tr>
<td>Genetic counsellor</td>
<td>43</td>
<td>55.4</td>
</tr>
<tr>
<td>Nurse</td>
<td>4</td>
<td>5.4</td>
</tr>
<tr>
<td>Psychologist†</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Family</td>
<td>39</td>
<td>52.7</td>
</tr>
<tr>
<td>Spouse</td>
<td>33</td>
<td>44.6</td>
</tr>
<tr>
<td>Friend</td>
<td>8</td>
<td>10.8</td>
</tr>
<tr>
<td>Other</td>
<td>7</td>
<td>9.5</td>
</tr>
</tbody>
</table>

*More than one source could be given.
†At the time, psychologists were not directly involved in genetics clinic.

HEALTH CARE PRACTICES

Screening

More than half of women (45/78) reported their cancer screening practices had changed since they learned of their BRCA1/2 carrier status. Women younger than 50 years old (p=0.08) and women with no previous diagnosis of cancer (p=0.0004) were most likely to have increased their cancer screening practices. The majority of women (63/75) did not have any difficulties obtaining regular screening. Table 6 summarises the self-reported screening practices of respondents for breast cancer and ovarian cancer.

Prophylactic surgery

Nearly two thirds of the respondents (47/72) said they had considered prophylactic surgery
Table 6 Screening practices at follow up (as reported by respondents)

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>Frequency</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular BSE</td>
<td>72.4%</td>
<td>(53/76)</td>
<td>27.6%</td>
</tr>
<tr>
<td>Regular CBE</td>
<td>86.8%</td>
<td>(66/76)</td>
<td>13.2%</td>
</tr>
<tr>
<td>Regular mammogram</td>
<td>87.3%</td>
<td>(48/55)†</td>
<td>12.7%</td>
</tr>
<tr>
<td>Regular pelvic exam</td>
<td>30/40</td>
<td>(75.0%)‡</td>
<td>25.0%</td>
</tr>
<tr>
<td>Regular pelvic ultrasound</td>
<td>26/39</td>
<td>(66.7%)‡</td>
<td>33.3%</td>
</tr>
<tr>
<td>Regular CA125 blood test*</td>
<td>22/40</td>
<td>(55.0%)‡</td>
<td>45.0%</td>
</tr>
</tbody>
</table>

⁠*8/40 (20.0%) did not know about CA125 blood test.
†Excluding those with bilateral breast cancer or prophylactic double mastectomies.
‡Excluding those with oophorectomy (for ovarian cancer, prophylaxis, or other reason).

either of the breasts or ovaries. Women below the age of 50 were more likely to have considered prophylactic surgery (80.5%) than women aged 50 years and above (45.2%) (p=0.002). Among those with no previous diagnosis of cancer, women aged less than 50 years were more likely to have considered prophylactic surgery (86.4%) than older women (50%) (p=0.054). Similarly, among women with a previous diagnosis of cancer, younger women (<50 years) were more likely to have considered prophylactic surgery (73.7%) than older women (44%) (p=0.049). Women with an educational level above high school were more likely to have considered prophylactic surgery (79.6%) than those with an educational level of high school or below (34.8%) (p=0.0002).

Twenty two of the 76 participants (29%) had either contralateral or bilateral prophylactic mastectomy. Sixteen of these women (73%) had prophylactic mastectomy following the genetic test result disclosure, whereas six women had prophylactic mastectomy before receiving results. Sixty four percent (14/22) of women who had prophylactic mastectomy completed the questionnaire less than 18 months after receiving their genetic test results. Of the 37 women who had unilateral breast cancer, 40.5% had contralateral prophylactic mastectomy following the initial diagnosis. Of women with no previous breast cancer, 15.4% (6/39) had prophylactic bilateral mastectomy.

The number of breast cancer cases and breast cancer deaths in the family were not found to be related to the decision to have prophylactic mastectomy. Women who had a prophylactic mastectomy had a mean of 2.4 breast cancers in the family and 1.1 deaths from breast cancer, whereas carriers who did not have prophylactic mastectomy had a mean of 3.2 breast cancers and 1.3 deaths from breast cancer in the family (p=0.211 and p=0.712, respectively). Similarly, the number of ovarian cancer cases and ovarian cancer deaths in the family were not found to be related to the decision to have prophylactic oophorectomy. Women who had prophylactic oophorectomy had a mean of 1.2 ovarian cancers in the family and 1.1 deaths from ovarian cancer, whereas carriers who did not have prophylactic oophorectomy had a mean of 1.0 ovarian cancers and 0.8 deaths from ovarian cancer in the family (p=0.353 and p=0.229, respectively).

The rates of oophorectomy were higher. Among women who had no previous diagnosis of ovarian cancer, 53.6% (30/56) had prophylactic bilateral salpingo-oophorectomy. Fifty percent of women who had prophylactic oophorectomy completed the questionnaire less than 18 months since receiving their genetic test result. There was a statistically significant difference based on educational level; those with an educational level of high school or less (92.9%) were more likely to have a prophylactic oophorectomy than those with an educational level above high school (40.5%) (p=0.0007). When educational level was adjusted for age, there was still a significant difference (p=0.01). These results included all women who had undergone a prophylactic oophorectomy before and after genetic testing. When eight women who had undergone a prophylactic oophorectomy before genetic testing were excluded from the analysis, education level was still significantly associated with prophylactic oophorectomy (p=0.026).

Satisfaction

Overall, 81.3% (61/75) of women believed that they were receiving adequate medical care in the prevention of breast and ovarian cancer. Over one third (33.8%) felt the need to visit the genetic counsellor again after receiving their test result. An overwhelming majority (92.3%) said they would recommend testing for BRCA1/2 to other women in their situation. The respondents were asked to rate their overall satisfaction with their experience of undergoing genetic testing on a scale of one to five, one indicating extremely dissatisfied and five indicating extremely satisfied. Nearly 65% (51/79) said they were very or extremely satisfied. Only three patients were very or extremely dissatisfied, including one respondent who believed she was denied disability insurance based on her genetic test result.

Patient satisfaction was also analysed according to the length of time since the mutation result was received. Thirty eight women had received mutation results greater than or equal to 18 months, and 41 women had received results less than 18 months ago. There was no difference in patient satisfaction based on time since receiving mutation result (p=0.95).

Discussion

In this study, we surveyed the needs of women undergoing genetic counselling and predictive testing in two familial breast-ovarian cancer clinics in Canada. The reasons cited by the participants for seeking genetic counselling were similar to those of previous reports on motivations for having BRCA1/2 genetic testing.16 22 23 The significant proportion of participants (34/79) who underwent predictive testing for a known family mutation may explain why the most common reason for having genetic testing was “to learn about personal risk of cancer”, while in the other studies concern about risk of cancer to children was the primary motivation.16 22 One of the goals of cancer genetic counselling is to promote surveillance for early detection of cancer among BRCA mutation carriers.24 The majority of women did not have
any difficulties obtaining screening. This may be because of the universal access to health care in Canada. There may be financial concerns with health care for US citizens. The potential difficulties to be encountered in the Canadian health care system may relate to waiting time and access for rural communities. We found that younger women (below the age of 50) and women with no previous diagnosis of cancer were most likely to change their screening practices following genetic counseling and testing. It is possible that older women are more likely to be involved in cancer screening protocols based on recommendations currently in place for the general population. It has been shown that women do not necessarily adhere to recommended screening or preventive options discussed when they are seen for results or follow up.1 Adherence to surveillance measures, such as breast self-examination and mammography, appears to be influenced by levels of anxiety, intrusive thoughts about cancer, psychological distress, education, employment, and age.15 25 A high degree of adherence to recommended mammographic screening guidelines has been reported among women at high risk for breast cancer.17 In contrast, in a group of BRCA1 carriers previously studied, only 39% reported receiving recommended mammographic screening.6 Table 6 describes the self-reported screening practices of our group of patients. The majority of women in all categories reported receiving regular screening for early detection of breast and ovarian cancer. The high adherence observed here may represent errors in recollection and, in future studies, it would be preferable to request the date of last screening or compare attendance for scheduled appointments at a clinic. Nearly two thirds of the respondents (65.3%) said they had considered prophylactic surgery (either mastectomy or oophorectomy). The option of prophylactic surgery is routinely presented to women as a method of risk reduction during the pre-test genetic counseling sessions at the University of Toronto and McGill University familial cancer clinics. The content of this discussion has not changed considerably for the women who considered this option; in fact, McGill University researchers were counselling women on prophylactic surgery using linkage analysis before the cloning of BRCA1 in 1994. Women below the age of 50 and those with an educational level above high school were more likely to have considered this option. Wagner et al10 recently described how 50% of female carriers in Austria would undergo prophylactic oophorectomy (53% affected and 46% non-affected carriers). Previously, Lerman et al28 reported that 31% of female BRCA1 mutation carriers considered prophylactic mastectomy and 48% considered prophylactic oophorectomy. However, at six months post-result disclosure, Lerman et al28 determined that only 1% had undergone prophylactic mastectomy and 2% had undergone prophylactic oophorectomy. In contrast, among our study respondents, 28% had prophylactic mastectomy and 54% had prophylactic oophorectomy on follow up inter-

view. This increased frequency of prophylactic surgery in our study may be explained by a longer follow up period among our study subjects. The difference may also reflect temporal changes in attitudes to prophylactic surgery. Our physicians and patients may be more accepting of the effectiveness of prophylactic surgery in the prevention of breast and ovarian cancers. Recent findings by Hartmann et al28 have suggested that prophylactic mastectomy offers at least an 80% reduction in risk of breast cancer in high risk women. This knowledge may influence the recommendations about prophylactic surgery that are given to BRCA1/2 mutation carriers. The differences between our findings and those of Lerman et al28 may also reflect a difference between the health insurance systems in Canada and the United States. In Canada, prophylactic surgery (including breast reconstruction) is covered by the universal provincial health insurance plans. At present, concerns about health care coverage are minor in Canada, but possible discrimination in life insurance, disability insurance, and long term care insurance are areas of concern in both countries.28 One respondent was dissatisfied with the genetic testing experience and would not recommend it to others because she believed that she was denied disability insurance on the basis of her mutation carrier status. Further research is needed in the area of genetic information and insurance discrimination in Canada.

Women with a previous diagnosis of breast cancer were more likely to opt for prophylactic surgery (of the contralateral breast) than were healthy women (table 4). Carriers with an educational level above high school were more likely to have had a prophylactic mastectomy compared to less educated women, although the association was not statistically significant (p=0.07). In contrast, women with an educational level above high school were less likely to have undergone prophylactic bilateral oophorectomy than less educated women (p=0.0007); this effect remained after adjusting for age (p=0.01). We believe that surgical removal of the breasts has a greater impact on a woman’s self-image than oophorectomy. Level of education may be associated with the relative importance that a woman places on self-image and on the consequence of surgical early menopause. This may explain the effect observed for educational levels. For the carriers in this study, the number of breast or ovarian cancer diagnoses or deaths in the family were not found to be related to the woman’s decision to proceed with surgery. Lerman et al28 concluded that those who opt for genetic testing might represent a psychologically vulnerable subgroup of high risk women. In our study, probands were more likely than their relatives to report that their personal or family relationships had been affected by the genetic counselling process (p=0.02). This probably represents the added anxiety of being the initiator of the genetic testing for the family or “gate keeper” role in disclosing this information to other relatives at risk. One third of women stated that their
family or personal relationships had changed since they received their mutation result. There was an equal distribution of positive and adverse effects on family relationships. Although 12 of the women indicated that genetic testing had a negative impact, the majority of the women would recommend genetic testing to other women in their situation. This suggests the value of genetic test results to the subject at risk for cancer, as was described by the women in this study. As previously stated, the primary motivation for undergoing genetic testing in this population was to learn about personal risk for cancer (table 3). The information that a person receives from genetic testing has potentially life altering consequences, including both positive and negative effects on relationships. Health care professionals may wish to make clients and their families aware of these effects and offer support when necessary.

Lynch et al\(^4\) reported that those who are told they have a germline mutation express a variety of reactions including acceptance because the results are not a surprise to them, relief from anxiety with the removal of uncertainty about their genetic risk status, a positive attitude with regard to prevention, and feelings of sadness or even anger. Similarly, our respondents reported a wide range of emotional reactions. We agree with Lynch et al\(^4\) that genetic counsellors should be responsive to all of these emotions.

Overall, 81% of respondents indicated they did not need additional support. Younger women (below the age of 50) were more likely to report a need for greater support, although this was not statistically significant (p=0.11). Audrain et al\(^5\) assessed the preferences for the content and process of genetic counselling and testing for breast-ovarian cancer susceptibility among women at high risk. Younger women (below the age of 50) were more likely to request a discussion of emotional reactions to testing and emotional support in post-test counselling. Women with higher levels of education and no previous diagnosis of cancer expressed a greater interest in taking part in a support group (table 4).

Bleiker et al\(^6\) found high levels of satisfaction with clinical genetic services received at family cancer clinics in The Netherlands. Communication of information regarding the possible impact of genetic testing on daily life and psychosocial support during and after the process of genetic counselling were identified as areas that needed attention. Client satisfaction is often cited as a measure of success in patient-physician communication, but this item is inherently flawed. The fact that clients take the time to complete a questionnaire is itself an indication of satisfaction, in that dissatisfied clients would not commit their time and effort to answer a physician survey. In our study, a relatively high response rate of 82.3% (79/96) was achieved and nearly 65% (51/79) of respondents said they were very or extremely satisfied. An overwhelming majority (92.3%) of the women said that they would recommend genetic testing to other women in their situation. This, combined with high satisfaction and response rates, suggests that counseling is effective in helping a woman throughout the genetic testing process. Based on our respondents’ experience and a disability insurance based on her genetic test result, it is important for health care professionals working in the genetics field to communicate clearly the current knowledge of employment and insurance implications and potential discrimination based on a positive BRCA mutation result.

Genetic counsellors and other health care professionals must also be sensitive to the emotional sequelae of disclosing positive mutation results to women, particularly in the period following disclosure, and must attempt to meet the needs of female carriers as shown in this study. Equally important is the effect of the woman’s genetic test result on her family relationships as recorded in one third of our respondents. These findings have a direct impact on the counselling and risk management of BRCA carriers. Further work is under way to assess the effectiveness of a group counselling intervention for BRCA mutation carriers.

We wish to thank Danielle Hanna, John Blondal, Nora Wong, and Corinne Serruys for their help in counselling the women, and Patricia Tonin, Elaine Jack, and Elaine Kwan for laboratory assistance.

An evaluation of needs of female BRCA1 and BRCA2 carriers undergoing genetic counselling

Kelly A Metcalfe, Alexander Liede, Elizabeth Hoodfar, Adrienne Scott, William D Foulkes and Steven A Narod

doi: 10.1136/jmg.37.11.866