The mutation spectrum in Holt-Oram syndrome

Editor—Holt-Oram syndrome (HOS) is a developmental disorder characterised by malformations of the radial ray of the forelimb and by congenital heart disease. The syndrome shows a marked variability in phenotype, with radial ray defects ranging from minor thumb abnormality through to severe reduction defect or phocomelia. The cardiac manifestations of HOS are similarly varied, and patients can present with a variety of structural heart abnormalities, atrial septal defects (ASDs) and ventricular septal defects (VSDs) being the most common, or conductions defects evident on ECG profiles. Previous studies have shown no correlation between the severity of a patient’s cardiac and skeletal abnormalities. Intrafamilial variation can be wide.

HOS shows autosomal dominant inheritance and mutations in the T-box transcription factor gene (TBX5) have been shown previously to be responsible for this disorder. There is also evidence for genetic heterogeneity. The mechanism by which mutations in TBX5 cause a dominant phenotype is not understood at present, and it is anticipated that knowledge of the type of mutations causing HOS may shed light on this. Knowledge of a large number of mutations and the relation of a person’s genotype to phenotype is also useful for genetic counseling. In the face of a growing demand for a molecular diagnostic test for HOS, it is also helpful to have a quantitative estimate of the ability of current methods to detect mutations in TBX5.

Twenty five cases with a clinical diagnosis of Holt-Oram syndrome have been tested for this study, bringing to 47 the total number of cases studied by us. Minimal diagnostic criteria were as described previously: bilateral radial ray defect, plus either cardiac abnormality or family history of cardiac abnormality. Cases were referred by a variety of clinicians and underwent full clinical assessment including x-rays, electrocardiography (ECG), and echocardiography. Information regarding the clinical features of these patients came from the referring doctor. The patients represented both sporadic (8) and familial (17) cases of Holt-Oram syndrome.

Mutational analysis was carried out using SSCP methods initially, followed by fluorescence sequencing of exons showing a non-standard SSCP banding pattern. The methods used were described in Li et al. Since that study, further analysis of the genomic structure of TBX5 has recognised that the previously reported exon B is in fact two exons. Extensive resequencing of both genomic and cDNA forms of TBX5 has also been undertaken, leading to revisions in the previously reported TBX5 sequence (the new sequence has accession number AF221714). This sequence is the same across the coding region as that produced by others. Of 17 new familial cases tested, eight showed linkage to chromosome 12 and the other families were too small to assess linkage. Table 1 shows that five mutations were identified in familial cases. Only one of these families was sufficiently large to show meaningful linkage to chromosome 12q markers. Of eight new sporadic cases studied, three have yielded mutations. Thus, in the 34 familial cases studied by us, eight mutations have been identified, and six mutations have been identified in 13 sporadic cases. The precise nature of all the new mutations identified are detailed in table 2.

The clinical features of HOS in all 47 cases are consistent with the previously described phenotype and show the wide spectrum of cardiac and skeletal abnormalities in this syndrome (see Bruneau et al for details of the complexity of cardiac abnormalities in HOS patients). Most patients show at least one defect of cardiac septation (an atrial or ventricular septal defect, or atrioventricular block) and abnormalities of the thumb. Radial hypoplasias and aplasias are present in sporadic cases PpHs, H20s, H22s, and H16s and in the familial cases H6f and Ghf, although not in every affected member.

Twenty five non-translocation mutations have been reported, including those presented here. These mutations are of 19 distinct types, with six mutations being identical to previously described forms identified in unrelated subjects (this paper and Basson et al). Of the 19 distinct non-translocation, disease causing mutations in TBX5 currently known, five are truncations, five amino acid substitutions, three splice site changes, and six reading frame shifts.

We have observed a significant difference in the proportion of cases in which a mutation was detected in our group of sporadic cases as opposed to our group of familial cases. Forty six percent (6/13) of sporadic cases studied in our laboratory have yielded mutations by SSCP screening, whereas only 24% (8/34) of familial cases have done so.

The overall mutation detection rate of 30% may be low for a variety of reasons. An inadequate mutation detection method would explain these results, yet the system in use by us is a standard one used on a variety of projects, all of which produce detection rates nearer the theoretical level for these techniques (approximately 95%). The largest PCR product used in the present analysis is only 326 bp long, well within the size acceptable for this kind of analysis. Mutation detection is also fully repeatable in our hands.

There are four other possible explanations for this low mutation detection rate: (1) clinical misdiagnosis in our patients, (2) genetic heterogeneity of Holt-Oram syndrome, (3) the presence of mutations in the untranslated and promoter regions of TBX5, which have not been tested in this analysis, and (4) deletion of whole exons of TBX5, which would not be recognised by SSCP.

Table 2 New mutations identified

<table>
<thead>
<tr>
<th>Case</th>
<th>Mutation type</th>
<th>Location</th>
<th>Mutation form</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nef</td>
<td>Substitution</td>
<td>Intron 4–5</td>
<td>5′ splice site (T to C)</td>
<td>Splice site change</td>
</tr>
<tr>
<td>FIF</td>
<td>Substitution</td>
<td>Exon 5</td>
<td>nt1170 (G to A)</td>
<td>Gly to Arg</td>
</tr>
<tr>
<td>FRf</td>
<td>Substitution</td>
<td>Exon 8</td>
<td>nt1611 (G to T)</td>
<td>Stop codon TAG</td>
</tr>
<tr>
<td>Jonf</td>
<td>Substitution</td>
<td>Exon 6</td>
<td>nt1233 (G to T)</td>
<td>Stop codon TAG</td>
</tr>
<tr>
<td>Chas</td>
<td>Deletion</td>
<td>Exon 7</td>
<td>nt220 (G to T)</td>
<td>Ser to Ile</td>
</tr>
<tr>
<td>Bers</td>
<td>Deletion</td>
<td>Exon 8</td>
<td>nt1370 (del T)</td>
<td>Reading frameshift</td>
</tr>
<tr>
<td>PpHs</td>
<td>Substitution</td>
<td>Exon 8</td>
<td>nt1500 (C to T)</td>
<td>Stop codon TAG</td>
</tr>
<tr>
<td>GHf</td>
<td>Substitution</td>
<td>Exon 8</td>
<td>nt1500 (C to T)</td>
<td>Stop codon TAG</td>
</tr>
</tbody>
</table>

Codes ending in f are familial cases, those with s are sporadic.
Other studies of HOS have not published mutation detection rates. We can only speculate as to why the rate of mutation detection in sporadic cases should be higher than that in familial cases (particularly in those familial cases whose disease loci are known to be present on 12q). An obvious explanation for such a discrepancy is ascertainment bias. A sporadic case must have both detectable heart and limb symptoms to be diagnosed as having HOS, whereas a family need only show both these effects across the pedigree (rather than in one subject) along with an autosomal dominant inheritance pattern.

A group of five of the 25 mutations published so far are the same, a C to T transition at position 1500, generating a stop codon. This mutation is seen in both sporadic and familial HOS cases among patients who do not share common alleles at microsatellite loci closely linked to TBX5. This site is likely to represent, therefore, a true “mutation hotspot”. The residue is part of a CG duplet, and therefore is likely to be methylated, with a high frequency of mutation to a thymine residue. Studies across a variety of human diseases have found distributions of mutations skewed towards the mutation of CpG sites. The retinoblastoma gene, RB1, shows a distribution of mutations severely skewed towards a few C→T transition hotspots (see the RB1 mutation database for details).

Basson et al argue, based on a collection of HOS families of varying symptom severity, that there is a relationship between the phenotype of patients and their specific mutations. It is proposed that truncation mutations in TBX5 lead to both limb and cardiac malformation, whereas single amino acid changes have different effects depending on their position in the T box. The set of HOS cases we have examined contains no large families of the type studied in this earlier analysis.

The five known cases (two familial and three sporadic) with the same mutation, a C→T transition at nucleotide 1500 in exon 8, present an opportunity to examine more closely the possibility of mutation specific genotype-phenotype correlation in cases with a truncation in TBX5. The clinical phenotypes of these cases are presented in table 3. Cardiac defects presented include isolated ASD and isolated VSD but no case with this mutation has a complex cardiac lesion. Syndactyly of the thumb and first finger is common within this group. There is much variation in symptom severity and the group as a whole shows no bias towards a particular severity of either cardiac or skeletal symptoms, in agreement with Basson et al. Along with the truncation forms already described, we have identified two new mutations which each result in a single amino acid substitution. The change in family Fif inserts an arginine in place of a glycine at position 169, which is conserved across T box genes such as Xbra (Xenopus), T (mouse), TbxT (chick), and omb (Drosophila). This introduces a strongly basic residue into a non-polar region in the DNA binding T domain. Family Fif comprises eight affected subjects in two generations, who show significant cardiac involvement compared with very mild skeletal findings. One case has a complex lesion, ASD with VSD, and another case has pulmonary stenosis, a conotruncal malformation which is not typical in HOS. This is consistent with a role for TBX5 which extends beyond cardiac seption. Only one subject in family Fif has a demonstrable limb abnormality and this is stiffening of the thumbs. The phenotype of this family is therefore consistent with the suggestion that substitution mutations produce predominantly limb or predominantly cardiac features, depending upon their location within TBX5.

The change of a serine to an isoleucine in patient Chas is outside the T domain of the protein and its biochemical effects are not known. The phenotype of this patient included a spinal scoliosis, which has not previously been observed in Holt-Oram syndrome, together with bilateral hypoplastic thumbs, syndactyly, and a ventricular septal defect. Currently available details on expression of TBX5 during development of the mouse and chick give no evidence of expression in the developing spine which would account for such a phenotype being the result of mutation of TBX5.

In summary, these new data expand our knowledge of the spectrum of mutations that cause Holt-Oram syndrome and also raise interesting questions about the genetic heterogeneity of this disease and its mutations. Clearly there is a need to improve the frequency of mutation detection in HOS and current analysis of untranslated and promoter regions, and screens for whole exon deletions should prove useful. A diagnostic service for TBX5 mutations is being set up.

Table 3. Clinical phenotypes

<table>
<thead>
<tr>
<th>Family</th>
<th>Pedigree No</th>
<th>Mutation</th>
<th>Skeletal abnormality</th>
<th>Cardiac abnormality</th>
</tr>
</thead>
<tbody>
<tr>
<td>H8f</td>
<td>I.1</td>
<td>Exon 8</td>
<td>Bilateral hypoplastic thumbs</td>
<td>AV block</td>
</tr>
<tr>
<td></td>
<td>II.2</td>
<td>nt1500 C→T</td>
<td>Syndactyly 1/2</td>
<td>ASD</td>
</tr>
<tr>
<td></td>
<td>II.2</td>
<td>Left absent thumb</td>
<td>Bilateral radial hypoplasia</td>
<td></td>
</tr>
<tr>
<td>H12f</td>
<td>I.1</td>
<td>Exon 8</td>
<td>Bilateral hypoplastic thumbs</td>
<td>AV block</td>
</tr>
<tr>
<td></td>
<td>II.1</td>
<td>nt1500 C→T</td>
<td>Syndactyly 1/2</td>
<td>AV block</td>
</tr>
<tr>
<td></td>
<td>II.3</td>
<td>Right triphalangeal thumb</td>
<td>Bilateral radial hypoplasia</td>
<td>VSD</td>
</tr>
<tr>
<td>H22s</td>
<td>Exon 8</td>
<td>nt1500 C→T</td>
<td>Bilateral radial hypoplasia</td>
<td>ASD</td>
</tr>
<tr>
<td></td>
<td>PpHs</td>
<td>nt1500 C→T</td>
<td>Bilateral radial hypoplasia</td>
<td>AV block</td>
</tr>
<tr>
<td></td>
<td>Exon 8</td>
<td>nt1500 C→T</td>
<td>Bilateral absent thumbs</td>
<td>AV block</td>
</tr>
<tr>
<td>Gbf</td>
<td>Exon 8</td>
<td>nt1500 C→T</td>
<td>Right radial hypoplasia</td>
<td>ASD</td>
</tr>
</tbody>
</table>

The first three authors contributed equally to this work. This work was funded by the British Heart Foundation. Ethical approval for the study was obtained from the Nottingham City Hospital Research Ethics Committee.
Hemiplegic cerebral palsy and the factor V Leiden mutation

Editor—Two mutations have been identified in recent years that predispose a heterozygous carrier to venous thrombosis. One is a mutation localised to the factor V gene, Arg 506 to Gln (factor V Leiden mutation, FVL), which has been shown to be the most common cause of familial thrombosis1 2 through resistance to activated protein C (APC), which is an inhibitor of activated factors V and VIII. The second is in the gene for the coagulation factor prothrombin (factor II), the G20210A mutation.4 There are two published estimates of prevalence of the FVL mutation in the Australian population, the first in a study of recurrent miscarriage,5 where 3.5% of the controls had FVL. The other is a recent study of blood donors where 3.6% were found to be heterozygous.6 Fewer studies have been done on the prothrombin (PT) mutation which is not as prevalent, thought to occur in 1.5% of the general population.7

Of particular relevance to this study are the findings of children with ischaemic strokes8 9 or thromboembolism,10 11 who have been reported as having a high prevalence of the FVL mutation. A more recent study12 suggests that neither FVL nor PT is a risk factor for childhood stroke and that “a significant increase in prevalence of the FVL mutation from a background prevalence of 4% to 15%, with a power of 80% and alpha of 0.05. Two 3 mm2 sections of Guthrie blood spots were cut out and placed in 50 μl of PCR buffer. They were initially incubated at 95°C for 30 minutes, then kept at 37°C overnight, after which they were pulse centrifuged. The supernatant was then transferred to a sterile 500 μl tube and kept at 4°C until the day of analysis.

DNA encompassing the FVL codon 506 mutation was amplified by PCR. The resulting product was checked on a 1% agarose gel stained with ethidium bromide before restriction enzyme digestion. DNA was digested overnight at 37°C using the enzyme MvaI. Fragments were then

8 http://www.d-lohman.de/Rb
10 Horb ME, Thomsen GH. Tbx5 is essential for heart development. Development 1999;126:1373-91.
13 Contact Dr Gareth Cross; gcross@ncht.org.uk
separated on a 6% polyacrylamide gel and subsequently stained with ethidium bromide. Both normal and heterozygote samples were run as controls in each assay.

The same methodology was applied for detection of the prothrombin 20210 polymorphism, but with HindIII restriction enzyme used, and with digest fragments being separated on a 3% agarose gel.

Power calculations were done in SPSS for Windows, version 8.0, SAMPLE POWER, and the binomial comparison of the sample prevalence with the estimated population prevalence was also done in SPSS version 8.0.

Of the 69 parents contacted, 58 responded (84%). All gave permission for use of the blood spot, except for one where the child was in the care of foster parents who did not feel that it was appropriate to give consent. Two Guthrie cards were unable to be found leaving a sample of 55 cases.

Of the 55 subjects recruited, 54 and 52 could be amplified successfully for the FVL and PT mutations, respectively. Of the 54 samples screened for FVL, one was found to be homozygous while three were found to be heterozygous. Therefore, the frequency of cases with at least one mutation of FVL was 7.4% which does not differ significantly from the average Australian population heterozygote prevalence of 3.6% (binomial test, one tailed p value=0.13). Only one of the 52 samples analysed for PT was found to be heterozygous (1.9%).

The clinical features of the five subjects with positive findings are as follows.

1. Homozygous for FVL mutation. This child was born by caesarean section at 32 weeks following a pregnancy complicated by pre-eclampsia toxemia. His birth weight was 1815 g. Hemiplegic cerebral palsy was diagnosed at the age of 4 months. A CT brain scan showed appearances consistent with infarction. There was no family history of note but testing showed that his mother is a heterozygote for FVL.

2. Heterozygous for FVL mutation. These three children were all normal birth weight, term infants. One child required some resuscitation at birth and meconium had been passed before delivery. Her MRI showed middle and anterior cerebral atrophy infarction. The family history was unremarkable apart from the unexpected death of the paternal grandfather, from a myocardial infarct, at 50 years of age. The other two children had uneventful perinatal periods and hemiplegia became apparent during the first year of life. Both had CT scans which showed loss of cerebral hemisphere substance in both grey and white matter with enlarged ventricles, not necessarily typical of major vessel infarction. While one child had a negative family history, the other child’s grandmother had sustained a deep venous thrombosis following a hysterectomy at the age of 50 years.

3. Heterozygous for the prothrombin mutation. This child had an uneventful perinatal period. A diagnosis of hemiplegic cerebral palsy was made at the age of 8 months. A CT brain scan showed signs of infarction with almost complete absence of the left frontal temporal and parietal lobes, with appearances typical of congenital occlusion of the left anterior and middle cerebral arteries and subsequent porencephaly. There was no family history of note.

All available radiological findings were assessed and are summarised in table 1.

If only cases with radiological evidence of ischaemia (14 cases) are used in the calculations, the frequency of either of the thrombophilia mutations (three cases) is 21%. This is significantly higher than the population prevalence (binomial test, one tailed p value=0.013).

In summary, evidence of the influence of the FVL mutation on thrombosis led us to consider whether a significant attributable factor to CP may be the presence of this mutation, which could cause an adverse vascular event such as placental infarcts or stroke in utero or early in postnatal life. To test this hypothesis, we obtained the frequency of the mutation in blood spots from a sample of children, all of whom had hemiplegic CP. This group was chosen because it was thought to be relatively homogeneous and it seemed that if a vascular event were causative, then spastic hemiplegia could be the most likely outcome. However, an examination of their radiological findings, after the mutation detection had been undertaken, showed quite marked heterogeneity. It was among the 14 cases with a known ischaemic event that three mutations were found, giving a significantly higher prevalence of 21%.

From these results, we conclude that there may be a relationship between carrier status for mutations predisposing an infant to thrombophilia and cerebral vascular events in utero (or neonatally) that lead to CP. To confirm such a relationship it will be necessary to study a larger sample of CP patients with a vascular basis, such as venous or arterial occlusion, and compare mutation frequencies with children with CP who do not have a vascular basis for CP.

In addition, investigation of maternal mutation status would be useful, particularly because the frequency of maternal pre-eclampsia in this sample was higher than expected (data not shown), 11% compared with the reported population frequency of approximately 5%21 22 and it is not known whether these mothers had FVL or PT mutations.

We report our findings at this stage to illustrate how DNA testing for common polymorphisms, which are of unknown importance in the general population, may be of importance to subjects within subgroups of the population. Primarily this would be for clinical management, but perhaps when potentially interactive aetiological factors, such as smoking in pregnancy, are better defined, this genetic information could be used for preventive measures.

We would like to thank Nick Tzanakos in the newborn screening laboratory of the Victorian Clinical Genetics Service, Murdoch Institute, for his technical assistance and Carole Webley for help in preparation of the manuscript.

J L HALLIDAY*
D REDDIHOOGH†
K BYRON‡
H EKERT§
M DITCHFIELD∥

*Epidemiology Unit, The Murdoch Children’s Research Institute, Carlton, Victoria, Australia
†Child Development and Rehabilitation, Royal Children’s Hospital, Parkville, Victoria, Australia
‡Centre for Medical Research, Royal Melbourne Hospital, Parkville, Victoria, Australia

www.jmedgenet.com
Analysis of the human tumour necrosis factor-alpha (TNFα) gene promoter polymorphisms in children with bone cancer

EDITOR—TNFα (tumour necrosis factor-alpha) is a cytokine produced by macrophages and monocytes with a wide range of activities, and polymorphisms within this gene have been postulated to contribute to MHC associations with autoimmune and infectious diseases. The role of TNFα in cancer is a controversial matter, because while it plays a key role in the “in vitro” killing of tumour cells by macrophages and lymphocytes, it has also been found in high concentrations in the “in vitro” killing of tumour cells by macrophages and lymphocytes. The existence of different TNFα alleles, related to different levels of TNFα, raises the possibility that tumour development is somewhat related to the genetic propensity of the person to produce higher levels of TNFα and, therefore, with the presence of genetic variants in several diseases. The effect of different TNFα alleles, related to different levels of TNFα, raises the possibility that tumour development is somewhat related to the genetic propensity of the person to produce higher levels of TNFα and, therefore, with the presence of genetic variants in several diseases. In fact, an increased frequency of the TNF308.1 allele in patients with malignant tumours has been shown to have both tumour necrotic and tumour promoting activities.

Recently, several genetic polymorphisms have been described in the human TNFα promoter. Among them, the rare allele at position −308 (TNF308.2) has been shown to be part of a complex haplotype that is involved in higher TNFα levels and has been related to poor prognosis in several diseases. The existence of different TNFα alleles, related to different levels of TNFα, raises the possibility that tumour development is somewhat related to the genetic propensity of the person to produce higher levels of TNFα and, therefore, with the presence of genetic variants in several diseases. In fact, an increased frequency of the TNF308.1 allele in patients with malignant tumours has been shown to have both tumour necrotic and tumour promoting activities. Wilson et al. have shown that the polymorphism at −308 has a significant effect on the transcriptional activity of the human TNFα gene, either because the interaction of the transcription enhancers is increased owing to the different DNA conformations, or because the TNF2 variant is the target for novel binding proteins.

The G to A transition at position −238 (TNF238.2) is also suspected to influence the expression of TNFα, and although its clinical and functional consequences are not clear so far, it has been associated with development and prognosis of different diseases as well.

The effects of TNFα on osteoblast differentiation and proliferation are complex but it is generally assumed that it inhibits bone formation and stimulates bone resorption. The activity of TNFα in osteosarcoma, Ewing’s sarcoma, and primary human osteoblast cultures has been widely studied showing that it has an antiproliferative and cytotoxic role which usually depends on the type of cell line under analysis.

Synergistic cytotoxicity has been described between TNFα and other cytokines, most frequently IFNγ (interferon gamma) and also with certain drugs that are commonly used in the treatment of osteosarcoma and Ewing’s sarcoma like the topoisomerase II inhibitors. The data available indicate that TNFα and agents that stimulate its production by host macrophages may have a role in the treatment of osteosarcoma and Ewing’s sarcoma.

Based on the role of TNFα in bone biology and the growing evidence of the relationship existing between TNFα genetics and cancer, we tried to test the hypothesis of whether genetic polymorphisms of the TNFα promoter contribute to the pathogenesis or prognosis of paediatric bone tumours. DNA was extracted following standard procedures from peripheral blood lymphocytes of 110 paediatric patients (52 females, 58 males) with bone tumours (63 osteosarcomas and 47 Ewing’s sarcomas) and 111 healthy children (53 females, 58 males). All the subjects included in the analysis were white, most of them from the region of Navarre (Spain), and the age distribution was very similar in the tumour and control groups (mean (SD): osteosarcoma 13.5 years (SD 3.3), Ewing’s sarcoma 12 years (SD 3.7), controls 11.1 years (SD 5.1)).
The human TNFα promoter region between nucleotides −398 and −103 was analysed by PCR-DGGE (polymerase chain reaction coupled to denaturing gradient gel electrophoresis) as previously published as shown in table 1. As in previous reports, polymorphisms at −376 and −238 were found to be in linkage disequilibrium. To date, there are no consistent data on the frequency of the polymorphic alleles at −376 and −163 in white populations, and larger series should be screened to establish the frequencies for these alleles in both normal and disease related populations.

The frequencies of the alleles at −308 and −238 in the Spanish population (0.87 and 0.92, respectively, deduced from table 2) were found to be very similar to those described for European white populations. The frequencies of the TNF238.2 allele (adenine at position −238) and TNF238.1/TNF238.2 heterozygote genotype was significantly lower in the osteosarcoma group, but not among Ewing’s sarcomas. We did not find any outstanding difference in the distribution of the TNF308.2 allele (adenine at position −308) between bone sarcomas and controls.

No relationship was found between the presence of genotypes for the TNFα gene promoter and any of the clinical parameters tested: tumour stage, tumour location or size, development of metastasis or relapse, and age at diagnosis (data not shown).

Surprisingly, the percentage of males carrying polymorphisms of the TNFα promoter was statistically higher than in females (p=0.025, OR=4.05, CI=1.13-14.43). We did not detect this difference in the group of healthy controls, in which the distribution of polymorphic patterns was similar in both sexes.

Several reports have indicated that different HLA (human leucocyte antigen) products and related genes may be risk factors for and also protective factors against cancer. The TNFα gene is of particular interest because of its involvement in tumour immunity and cancer pathogenesis and the relationship existing between certain TNFα genetic variants and human tumours.

Although the exact regulatory mechanisms altered by the TNFα promoter polymorphisms are not completely delineated, studies on these polymorphisms have shown that those at −308 and −238 are associated with the development and even prognosis of certain types of cancer. Chouchane et al detected a marked decrease of the TNF308.1 homozygous genotype in patients with non-Hodgkin’s lymphoma, breast carcinoma, and in a group of different malignant tumours. Nevertheless, it must be taken into account that the results of this study were obtained with 111 paired healthy children, to search for the putative association between the TNFα gene and tumour development or prognosis.

The overall distribution of TNFs polymorphic alleles in bone cancer paediatric patients and control subjects is shown in table 1. As in previous reports, polymorphisms at −376 and −238 were found to be in linkage disequilibrium. To date, there are no consistent data on the frequency of the polymorphic alleles at −376 and −163 in white populations, and larger series should be screened to establish the frequencies for these alleles in both normal and disease related populations.

The frequencies of the alleles at −308 and −238 in the Spanish population (0.87 and 0.92, respectively, deduced from table 2) were found to be very similar to those described for European white populations. The frequencies of the TNF238.2 allele (adenine at position −238) and TNF238.1/TNF238.2 heterozygote genotype was significantly lower in the osteosarcoma group, but not among Ewing’s sarcomas. We did not find any outstanding difference in the distribution of the TNF308.2 allele (adenine at position −308) between bone sarcomas and controls.

No relationship was found between the presence of genotypes for the TNFα gene promoter and any of the clinical parameters tested: tumour stage, tumour location or size, development of metastasis or relapse, and age at diagnosis (data not shown).

Surprisingly, the percentage of males carrying polymorphisms of the TNFα promoter was statistically higher than in females (p=0.025, OR=4.05, CI=1.13-14.43). We did not detect this difference in the group of healthy controls, in which the distribution of polymorphic patterns was similar in both sexes.

Several reports have indicated that different HLA (human leucocyte antigen) products and related genes may be risk factors for and also protective factors against cancer. The TNFα gene is of particular interest because of its involvement in tumour immunity and cancer pathogenesis and the relationship existing between certain TNFα genetic variants and human tumours.

Although the exact regulatory mechanisms altered by the TNFα promoter polymorphisms are not completely delineated, studies on these polymorphisms have shown that those at −308 and −238 are associated with the development and even prognosis of certain types of cancer. Chouchane et al detected a marked decrease of the TNF308.1 homozygous genotype in patients with non-Hodgkin’s lymphoma, breast carcinoma, and in a group of different malignant tumours. Nevertheless, it must be taken into account that the results of this study were obtained with 111 paired healthy children, to search for the putative association between the TNFα gene and tumour development or prognosis.

The overall distribution of TNFs polymorphic alleles in bone cancer paediatric patients and control subjects is shown in table 1. As in previous reports, polymorphisms at −376 and −238 were found to be in linkage disequilibrium. To date, there are no consistent data on the frequency of the polymorphic alleles at −376 and −163 in white populations, and larger series should be screened to establish the frequencies for these alleles in both normal and disease related populations.

The frequencies of the alleles at −308 and −238 in the Spanish population (0.87 and 0.92, respectively, deduced from table 2) were found to be very similar to those described for European white populations. The frequencies of the TNF238.2 allele (adenine at position −238) and TNF238.1/TNF238.2 heterozygote genotype was significantly lower in the osteosarcoma group, but not among Ewing’s sarcomas. We did not find any outstanding difference in the distribution of the TNF308.2 allele (adenine at position −308) between bone sarcomas and controls.

No relationship was found between the presence of genotypes for the TNFα gene promoter and any of the clinical parameters tested: tumour stage, tumour location or size, development of metastasis or relapse, and age at diagnosis (data not shown).

Surprisingly, the percentage of males carrying polymorphisms of the TNFα promoter was statistically higher than in females (p=0.025, OR=4.05, CI=1.13-14.43). We did not detect this difference in the group of healthy controls, in which the distribution of polymorphic patterns was similar in both sexes.

Several reports have indicated that different HLA (human leucocyte antigen) products and related genes may be risk factors for and also protective factors against cancer. The TNFα gene is of particular interest because of its involvement in tumour immunity and cancer pathogenesis and the relationship existing between certain TNFα genetic variants and human tumours.

Although the exact regulatory mechanisms altered by the TNFα promoter polymorphisms are not completely delineated, studies on these polymorphisms have shown that those at −308 and −238 are associated with the development and even prognosis of certain types of cancer. Chouchane et al detected a marked decrease of the TNF308.1 homozygous genotype in patients with non-Hodgkin’s lymphoma, breast carcinoma, and in a group of different malignant tumours. Nevertheless, it must be taken into account that the results of this study were obtained with 111 paired healthy children, to search for the putative association between the TNFα gene and tumour development or prognosis.
Adult patients in the Tunisian population and the polymorphisms of TNFα are dependent on ethnicity.

In the present study, we report a decrease in the TNF238.2 rare allele among osteosarcoma paediatric patients and no difference from the control population in the distribution of the TNF308.2 variant in either of the tumour groups analysed, while other authors have described a decreased representation of the TNF308.2 variant in either of the patients and no differences in the TNF238.2 rare allele among osteosarcoma paediatric patients. However, it has been proven, in transfection assays, that there are no function and regulation of the TNFα promoter. However, it has been proven, in transfection assays, that there are no differences in TNFα production after stimulation of TNF238.2 heterozygous or normal homozygous cells; therefore TNF238.2 is not likely to be of functional relevance for transcriptional activation, and the actual meaning of the –238 promoter polymorphism remains a controversial matter.

There is evidence that the –308 TNF2 allele is overexpressed in diseases where TNFα levels are associated with poor prognosis. In our bone sarcoma series, we did not find the increased number of TNFα polymorphic alleles in male osteosarcoma patients, several other authors have reported gender differences and increased TNFα levels in male patients affected by type II diabetes mellitus. A possible explanation for this finding is that the increased levels of TNFα in males are the consequence of the presence of an increased number of the TNF308.2 allele, which has been associated with higher expression of the TNFα gene. In fact, in our series of osteosarcoma, there is a tendency for a higher number of TNF308.2 alleles in male patients, without reaching, however, statistical significance (p = 0.079).

Table 3

Genotypes for the TNFα promoter variants at –238 and –308 in bone sarcoma patients and in healthy controls

<table>
<thead>
<tr>
<th>Locus TNFα</th>
<th>Controls (n=111)*</th>
<th>Osteosarcoma (n=63)</th>
<th>ESAT (n=47)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotype</td>
<td>No %</td>
<td>No %</td>
<td>No %</td>
</tr>
<tr>
<td>GG</td>
<td>83 74.8</td>
<td>49 77.8</td>
<td>41 87.2</td>
</tr>
<tr>
<td>GA</td>
<td>28 25.2</td>
<td>145 12.8</td>
<td>6 12.8</td>
</tr>
<tr>
<td>p=0.65, NS, OR=1.05 (CI 0.41, 1.76)</td>
<td>p=0.08, NS, OR=0.43 (CI 0.17, 1.13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GG</td>
<td>93 83.8</td>
<td>61 96.8</td>
<td>41 87.2</td>
</tr>
<tr>
<td>GA</td>
<td>18 16.2</td>
<td>2 3.2</td>
<td>6 12.8</td>
</tr>
<tr>
<td>p=0.0095, * OR=0.17 (CI 0.04, 0.76)</td>
<td>p=0.58, NS, OR=0.76 (CI 0.28, 2.04)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Number of subjects analysed.
2. HS, Ewing’s sarcoma.
3. In each polymorphism G is the normal allele and A is the polymorphic one.
4. 313 patients are GA and one is AA.
5. Statistically significant.
Low prevalence of germline BRCA1 mutations in early onset breast cancer without a family history

EDITOR— Germline mutations in the BRCA1 and BRCA2 genes cause predisposition to breast and ovarian cancer. Epidemiological evidence and linkage studies suggested that the likelihood that a woman with breast cancer has a genetic susceptibility to the condition is greater the younger she was at diagnosis and with increasing extent of family history of the disease. Studies of the prevalence of germline mutations in BRCA1 and BRCA2 in women with breast cancer has enabled the frequency of mutations to be determined in women with different ages at diagnosis and extent of family history of breast cancer. 1,2 The CASH study into the attributable risk of breast and ovarian cancer estimated that 33% of all breast cancers diagnosed by the age of 29 years, and 22% diagnosed by the age of 30-39 years, are the result of an inherited mutation. 1 However, the proportion of breast cancer cases diagnosed by 40 years resulting from a BRCA1 mutation was predicted to be 5.3%. 3 Previous population based studies of the prevalence of BRCA1 mutations in early onset breast cancer have been in cases unselected for family history, and the majority of mutation carriers detected did have some degree of family history of either breast or ovarian cancer. 6–10 The aim of this study was to establish the prevalence of BRCA1 mutations in women with different ages at diagnosis and extent of family history of breast cancer. 7,8 Epidemiological evidence and linkage studies suggested that the likelihood that a woman with breast cancer has a genetic susceptibility to the condition is greater the younger she was at diagnosis and with increasing extent of family history of the disease. Studies of the prevalence of germline mutations in BRCA1 and BRCA2 in women with breast cancer has enabled the frequency of mutations to be determined in women with different ages at diagnosis and extent of family history of breast cancer. 1,2 The CASH study into the attributable risk of breast and ovarian cancer estimated that 33% of all breast cancers diagnosed by the age of 29 years, and 22% diagnosed by the age of 30-39 years, are the result of an inherited mutation. 1 However, the proportion of breast cancer cases diagnosed by 40 years resulting from a BRCA1 mutation was predicted to be 5.3%. 3 Previous population based studies of the prevalence of BRCA1 mutations in early onset breast cancer have been in cases unselected for family history, and the majority of mutation carriers detected did have some degree of family history of either breast or ovarian cancer. 6–10

The aim of this study was to establish the prevalence of BRCA1 mutations in a large series of British patients with a young age of onset and no known family history of the disease, since such patients are referred relatively frequently for genetic counselling. The presence of BRCA1 mutations in a significant proportion of these patients would have important implications for the planning of a mutation screening strategy in diagnostic services.

Patients were ascertained from the Imperial Cancer Research Fund Clinical Breast Oncology Department at Guy’s Hospital, and the family cancer clinics at the Genetics Departments of Guy’s Hospital and the Royal Free Hospital, both in London, and from St Mary’s Hospital, Manchester. The Manchester cases were initially ascertained as part of a population based series for other studies. Patients without a known family history of breast or ovarian cancer at referral were recruited into this study, and these patients were interviewed at home by a genetic nurse counsellor. A family history was taken by the clinical geneticist or genetic nurse counsellor, and the diagnosis confirmed in all probands with either the referring breast unit or the patient’s GP or oncologist. Patients with a known family history of breast or ovarian cancer at referral were excluded from the study. The range of age of diagnosis was 22-35 years and the median age of diagnosis was 31 years. Blood samples were taken after the purpose of the study had been explained and informed consent obtained. Full genetic counselling was provided, following agreed protocols, and results were made available to those women wishing to be informed.

The 22 BRCA1 coding exons were amplified using 24 pairs of primers (exon 11 was amplified in three overlapping fragments). The fluorescent chemical cleavage of mismatch (FCCM) protocol was adapted from the method of Rowley et al. 11 PCR products were labelled by incorporation of dUTP analogues which were labelled with either R110 (blue), R6G (green), or Tamra (yellow) fluorescent dyes (PE Applied Biosystems Inc), and heteroduplex molecules then subjected to hydroxylamine modification and piperidine cleavage. Using the three different dyes to label the 24 PCR products that cover the complete BRCA1 coding sequence, three patients could be analysed for one fragment in one lane of the gel; thus three patients were completely screened in 24 lanes and six patients were screened on a 50 well gel. The FCCM technique has been reported to detect over 95% of mutations in a blind study of haemophilia A patients. 12 We evaluated the sensitivity of our BRCA1 protocol by examination of the eight polymorphisms that have been reported in the BRCA1 gene with a frequency of at least 5% (1886A/G, 2201C/T, 2430T/C, 2731C/T, 3232A/G, 3667A/G, 4427C/T, 4956A/G). 13 These polymorphisms were all detected reproducibly at the expected frequency in a panel of over 400 patients who were tested, as part of our continuing studies. In addition, FCCM detected the mutations in three known BRCA1 positive samples (188del 11bp, 5242 C/A, and 5382insC) that were previously found in our laboratory by SSCP analysis. 13 The fluorescent chemical cleavage assay which we have developed therefore allows a rapid and sensitive mutation screen of BRCA1.

Four mutations that were likely to be pathogenic were detected in 110 patients (3.6%) and are listed in table 1. These included three sequence variants that would be predicted to result in premature termination of translation. The 185delAG frameshift mutation, which is prevalent in the Ashkenazi Jewish population, was identified in a British patient (91032) with Jewish ancestry. The 4693-4694delAA mutation was detected in a British patient (78750) who was diagnosed with breast cancer at the age of 26 years. The truncating mutation 3875-3878delGTCT was seen in a patient of Afro-Caribbean origin (94641), who was diagnosed with breast cancer aged 33 years and with a second primary cancer at 38 years. Testing for this mutation in the parents of the patient indicated that it was inherited from her father. A novel in frame deletion, 1965-1967delCTC, was detected in a patient of West African origin (103727) who was diagnosed with breast cancer at the age of 27 years. This mutation would be predicted to result in the deletion of a single amino acid, serine 616, but would not lead to premature termination of translation. The sequence change was absent in over 350 control chromosomes in our study and fulfils all the other criteria for pathogenic status. 13 The pedigrees of these four women are shown in fig 1. Although all four patients originally reported no family history of breast cancer, further investigation showed that the maternal great grandmother of patient 103727 was diagnosed with the disease at about 60 years of age. The lack of a history of breast or ovarian cancer in these families is likely to result from a combination of factors including paternal transmission of the mutation, chance, and reduced penetrance.

Eight other rare DNA sequence variants were identified (table 2). Three of these would not be predicted to alter the expression of BRCA1 or the sequence of its encoded protein (Q1604Q, IVS22+8T/C, UGA+36G/C) and R1347G

<table>
<thead>
<tr>
<th>Patient</th>
<th>Exon</th>
<th>Nucleotide change</th>
<th>Amino acid change</th>
</tr>
</thead>
<tbody>
<tr>
<td>91032</td>
<td>2</td>
<td>185-186delAG</td>
<td>39 stop</td>
</tr>
<tr>
<td>103727</td>
<td>11</td>
<td>1965-1967delCTC</td>
<td>S616del</td>
</tr>
<tr>
<td>94641</td>
<td>11</td>
<td>3875-3878delGTCT</td>
<td>1264 stop</td>
</tr>
<tr>
<td>78750</td>
<td>15</td>
<td>4693-4694delAA</td>
<td>1529 stop</td>
</tr>
</tbody>
</table>

Table 1 BRCA1 pathogenic mutations
was present in a patient with a frameshift mutation. The pathogenic status of the other four (Q804H, S1140G, P1637L, and M1652I) remains inconclusive in the absence of a functional assay for the BRCA1 protein. At present, screening panels of ethnically matched controls is a useful means of excluding missense mutations as pathogenic mutations of high penetrance, and it would be helpful if this information was provided in the Breast Cancer database (www.nhgri.nih.gov/Intramural_research/Lab_transfer/Bic/index.html).

Our detection of pathogenic BRCA1 mutations in 3.6% of young breast cancer patients without a family history of breast or ovarian cancer is consistent with the estimate of Ford et al5 that the proportion of breast cancer cases in the general population resulting from BRCA1 is 5.3% below the age of 40 years. A recent population based study of young British breast cancer patients unselected for family history and diagnosed below the age of 35 years, Langston et al7 detected mutations in 7.5%, Malone et al9 in 6.2%, and Struweing et al8 in 5.7%. Fitzgerald et al6 detected BRCA1 mutations in 13% of women diagnosed before the age of 30 years, but this included Ashkenazi Jewish patients who have founder mutations and some patients with a family history. Since we did not screen the promoter region of BRCA1 or for deletions of entire exons,14 we cannot exclude the possibility that some mutations were missed, and the pathogenic status of several sequence variants remains unresolved. However, the important practical implication of our study is that, given the time and expense involved, it would be reasonable to attach a low priority to BRCA1 mutation screening of young isolated cases of breast cancer in the context of the provision of a publicly funded and cost effective diagnostic service. A screen of this cohort of patients for BRCA2 mutations is in progress.

This study was supported by the NHS National Cancer Research and Development Programme (UK) (project No NC/P/B11/34).

Table 2 BRCA1 unclassified variants and polymorphisms

<table>
<thead>
<tr>
<th>Exon</th>
<th>Nucleotide change</th>
<th>Amino acid change</th>
<th>Freq in controls</th>
<th>Conserved in mouse/dog</th>
<th>BIC entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>2531 G/C</td>
<td>Q804H</td>
<td>0.0</td>
<td>+/-</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>3537 A/G</td>
<td>S1140G</td>
<td>0.0</td>
<td>+/-</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>4138 A/G</td>
<td>R1347G</td>
<td>0.01*</td>
<td>+/-</td>
<td>75</td>
</tr>
<tr>
<td>16</td>
<td>4931 A/G</td>
<td>Q1604Q</td>
<td>ND</td>
<td>+/+†</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>5029 C/T</td>
<td>P1637L</td>
<td>0.0</td>
<td>+/-</td>
<td>11</td>
</tr>
<tr>
<td>18</td>
<td>5075 G/A</td>
<td>M1652I</td>
<td>0.01</td>
<td>+/+</td>
<td>8</td>
</tr>
<tr>
<td>intron 22</td>
<td>IVS22+8 T/C</td>
<td>Unknown</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>3’ untrans</td>
<td>UGA+36 C/G</td>
<td>Unknown</td>
<td>ND</td>
<td>ND</td>
<td>4</td>
</tr>
</tbody>
</table>

*As reported by Langston et al.7
†Nucleotide sequence is conserved in mouse and dog BRCA1 genes.
ND = not determined.

Figure 1 Pedigrees of cases in whom a pathogenic BRCA1 mutation was identified.

Table 2 BRCA1 unclassified variants and polymorphisms

<table>
<thead>
<tr>
<th>Exon</th>
<th>Nucleotide change</th>
<th>Amino acid change</th>
<th>Freq in controls</th>
<th>Conserved in mouse/dog</th>
<th>BIC entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>2531 G/C</td>
<td>Q804H</td>
<td>0.0</td>
<td>+/-</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>3537 A/G</td>
<td>S1140G</td>
<td>0.0</td>
<td>+/-</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>4138 A/G</td>
<td>R1347G</td>
<td>0.01*</td>
<td>+/-</td>
<td>75</td>
</tr>
<tr>
<td>16</td>
<td>4931 A/G</td>
<td>Q1604Q</td>
<td>ND</td>
<td>+/+†</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>5029 C/T</td>
<td>P1637L</td>
<td>0.0</td>
<td>+/-</td>
<td>11</td>
</tr>
<tr>
<td>18</td>
<td>5075 G/A</td>
<td>M1652I</td>
<td>0.01</td>
<td>+/+</td>
<td>8</td>
</tr>
<tr>
<td>intron 22</td>
<td>IVS22+8 T/C</td>
<td>Unknown</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>3’ untrans</td>
<td>UGA+36 C/G</td>
<td>Unknown</td>
<td>ND</td>
<td>ND</td>
<td>4</td>
</tr>
</tbody>
</table>

*As reported by Langston et al.7
†Nucleotide sequence is conserved in mouse and dog BRCA1 genes.
ND = not determined.

This study was supported by the NHS National Cancer Research and Development Programme (UK) (project No NC/P/B11/34).
Delineation of a new syndrome: clustering of pyloric stenosis, endometriosis, and breast cancer in two families

EDITOR—Familial tendencies have previously been observed for congenital pyloric stenosis, endometriosis, and breast cancer. These conditions have never been considered to have shared aetiological origins and consequently no previous attempts have been made to establish an association. For example, when obtaining family history information for a child with pyloric stenosis, one would not routinely request a description of adult onset conditions such as endometriosis or breast cancer. Two families sharing an unusual clustering of these three conditions (pyloric stenosis, endometriosis, and breast cancer) were ascertained at the familial cancer clinics of the Women’s College and Princess Margaret Hospitals in Toronto.

Family 1 (fig 1) contains four confirmed cases of breast cancer (below age 60), seven cases of endometriosis, five cases of congenital pyloric stenosis, nine cases of polycystic ovaries, and four cases of non-insulin dependent diabetes. In a second unrelated family, a woman previously diagnosed with premenopausal breast cancer, endometriosis, and pyloric stenosis reported one other case of congenital pyloric stenosis and four other cases of endometriosis in her family (fig 1). It is the similar and unusual presentation in these two families which suggests that the clustering of pyloric stenosis, endometriosis, and breast cancer may not be the result of chance.

A family history of breast cancer is known to be the most obvious risk of breast and ovarian cancer.

References
each condition. A future study of pyloric stenosis in a case-control design may investigate any association with breast cancer or endometriosis.

Figure 1 Pedigrees of families 1 and 2. Proband is indicated by an arrow. The age of the subjects appears directly below symbol. CA = breast cancer followed by age of diagnosis (dx); Psu = primary site of cancer was not known; Pr CA = prostate cancer; Cx CA = cervical cancer; TAH = total abdominal hysterectomy; BSO = bilateral salpingo-oophorectomy; NIDDM = non-insulin dependent diabetes mellitus; CHD = congenital heart disease; D&C = dilatation and curettage; SA = spontaneous abortion; SB = stillbirth.

Punctate calcification of the epiphyses, visceral malformations, and craniofacial dysmorphism in a female baby

EDITOR—We report a fetus with striking craniofacial dysmorphism, brachydactyly, and cerebral and cardiac malformations in addition to punctate calcification of the epiphyses.

The mother was treated for tuberculosis seven years before the pregnancy but there were no known systemic illnesses or teratogenic influences during this pregnancy. The mother’s first pregnancy resulted in a termination at 22 weeks of gestation for multiple congenital abnormalities, but further details are not known.

The baby was the second child born to a 21 year old mother. A termination was performed at 21 weeks of gestation because of multiple anomalies seen on antenatal scanning. Necropsy showed a female fetus (fig 1) with a weight of 1544 g, consistent with 17 weeks’ gestation. The crown-heel length was 16.4 cm and right foot length was 18 mm. Facial examination showed an open right eye with exophthalmos, hypertelorism, a flat nasal bridge with hypoplasia of the alae nasi, flattening of the midface, a short philtrum with a well defined philtral groove, large lips, and a wide mouth with micrognathia. The right ear was simple and low set and the left ear was rudimentary.

Figure 1 (A) Front view of fetus. (B) Hand of fetus. (C) Foot of fetus.
sal bones and the fingers and toes were extremely short with a single phalanx in the second to fifth digits and almost absent ossification of the phalanges. The thorax was short and broad with 11 pairs of ribs and there was posterior dislocation of the hips. The couple chose not to attend genetic counselling clinic.

This baby had an unusual pattern of malformations including right exophthalmos, midface hypoplasia, rudimentary ears, cerebral ventriculomegaly, a common truncus arteriosus and ventricular septal defect, and extreme brachydactyly in addition to calcific stippling of the epiphyses. Epiphysial stippling can be found in the primary chondrodysplasias, but the visceral abnormalities in this baby are not typical of chondrodysplasia and the presentation is neither consistent with brachytelephalangic chondrodysplasia punctata (CP) or humerometacarpal CP. One plausible diagnosis is Pacman dysplasia, a rare condition in which stippling of the lower spine and epiphyses has been found with bowing of the femora, spinal clefting, and giant, multinucleated, osteoclast-like cells. Although a patent ductus was described in one child, Pacman dysplasia has not been reported with severe visceral abnormalities or craniofacial dysmorphism as found in this baby.

Stippling of the epiphyses is well known to be causally heterogeneous, but syndromes with punctate calcification and visceral malformations are rare. Two sibs were described with short stature, ocular colobomata, midface hypoplasia with a small nose, low set ears, and dysplastic distal phalanges in addition to stippled epiphyses.

Internal examination of the brain showed encephalophagy of both lateral cerebral ventricles, absent olfactory bulbs, and an absent pituitary gland. The posterior fossa contained a cystic structure consistent with a Dandy-Walker malformation, hypogenesi of the corpus callosum, and a cephalocele. Radiographs of the skeleton showed stippled epiphyses, midfacial hypoplasia, and short ribs.

These cases show a degree of similarity to this baby with vertebral malformations in association with midface and nasal hypoplasia, dysplastic ears, brachydactyly, and cranial and cerebral malformations. However, the variable nature of the accompanying anomalies makes it difficult to be confident that these patients represent heterogeneity of the same condition. Despite the incomplete clinical information in our case, we believe that documentation of these anomalies will prove useful in view of the rarity of the combination of features and the paucity of reports describing epiphysial stippling and malformations.

ANNE SLAVOTINEK HELEN KINGSTON

University Department of Medical Genetics and Regional Genetic Service, St Mary's Hospital, Haslam Road, Manchester M13 0JH, UK

Correspondence to: Dr Kingston, helenk@central.cmht.nwest.nhs.uk

Unexpected high frequency of de novo unbalanced translocations in patients with Wolf-Hirschhorn syndrome (WHS)

Here we report six patients with unbalanced translocations, t(4p;8p) and t(4p;7p), respectively, and discuss their phenotypic abnormalities. Since 1996 we have performed clinical, molecular, cytogenetic, and molecular-cytogenetic investigations in a total of 22 patients with clinical signs of Wolf-Hirschhorn syndrome. These patients were all seen by one of the authors. In five of them (22%), the combination of cytogenetic and molecular investigations showed a de novo unbalanced translocation; in a sixth patient the de novo occurrence of the translocation could not be confirmed because no blood sample from the father was available.

The clinical findings of patients 1-5, who all presented with characteristic features of WHS, are summarised in table 1. Patient 6 (CL220585/87E1624) had some additional findings listed in table 1.

The combination of Hirschsprung disease and hydrocephalus was suggestive of CRASH syndrome in patient 6, but SSCP analysis of the LICAM gene was normal.

Chromosome studies including GTG banding were performed on peripheral blood lymphocytes according to slightly modified standard techniques. DNA from cosmids pc847.351, L21f12 (D4S180), and L228at (D4S81) and inter-Alu PCR products from YAC DNA (50 ng) or YAC DNA (100 ng) was mixed with human Cot-1 fraction DNA to suppress repetitive sequences or unincorporated nucleotides by using 1800 ml Centricon 30 kit (Gibco, Life Technologies Inc, Gaithersburg, MD, USA). Labelled cosmid and YAC DNA was separated from 877G6, 405D10, 794D12, 225D2, and 435A11 (CEPH) were labelled with digoxigenin using a BRL nick translation kit (Gibco, Life Technologies Inc, Gaithersburg, MD, USA). FISH was performed as described by Lichter et al. Labelled cosmid DNA (50 ng) or YAC DNA (100 ng) was mixed with human Cot-1 fraction DNA to suppress repetitive sequences or block non-specific hybridisation. Hybridisation was detected using monoclonal anti-digoxin, anti-mouse IgG FITC conjugate and anti-rabbit IgG FITC conjugate (Sigma Immunogenetics, St Louis, MO, USA). The probe yielding the strongest signal in all the patients was chosen to perform FISH on the father of patient 6 (CL220585/87E1624) and the results were compared with those of the patient.

Table 1 Clinical findings in patients 1-5 with t(4;8) and patient 6 with t(4;7)

<table>
<thead>
<tr>
<th>Patient</th>
<th>Anthropometric data</th>
<th>Dysmorphic features</th>
<th>Internal findings</th>
<th>Neurological development</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Birth (gestational weeks) 39</td>
<td>Hydropsyphalosynthesis +</td>
<td>Heart defect –</td>
<td>Sitting age (months) 13</td>
</tr>
<tr>
<td></td>
<td>Weight (g) 2900 (−1.0 SD)</td>
<td>+</td>
<td>–</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Length (cm) 39</td>
<td>+</td>
<td>ASR</td>
<td>ASD</td>
</tr>
<tr>
<td></td>
<td>OFC (cm) 31.5 (−2.4 SD)</td>
<td>+</td>
<td>ASR</td>
<td>ASD</td>
</tr>
<tr>
<td></td>
<td>Age at examination (y) 1/12</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>Birth (gestational weeks) 36</td>
<td>Strabismus +</td>
<td>–</td>
<td>Sitting age (months) 20</td>
</tr>
<tr>
<td></td>
<td>Weight (g) 2120 (−1.2 SD)</td>
<td>+</td>
<td>–</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Length (cm) 36</td>
<td>–</td>
<td>ASR</td>
<td>ASD</td>
</tr>
<tr>
<td></td>
<td>OFC (cm) 30.5 (−1.9 SD)</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Age at examination (y) 3/12</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>Birth (gestational weeks) 38</td>
<td>Broad, large mouth –</td>
<td>–</td>
<td>Sitting age (months) 60</td>
</tr>
<tr>
<td></td>
<td>Weight (g) 1800 (−3.4 SD)</td>
<td>–</td>
<td>–</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Length (cm) 38</td>
<td>–</td>
<td>–</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>OFC (cm) 35.5 (−1.9 SD)</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Age at examination (y) 3/12</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>Birth (gestational weeks) 36</td>
<td>Downward corners of mouth –</td>
<td>–</td>
<td>Sitting age (months) 60</td>
</tr>
<tr>
<td></td>
<td>Weight (g) 2240 (−3.6 SD)</td>
<td>–</td>
<td>–</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Length (cm) 36</td>
<td>–</td>
<td>–</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>OFC (cm) 32 (−2.3 SD)</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Age at examination (y) 60</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>Birth (gestational weeks) 25</td>
<td>Cleft lip/palate –</td>
<td>–</td>
<td>Sitting age (months) 69</td>
</tr>
<tr>
<td></td>
<td>Weight (g) 2200 (−3.7 SD)</td>
<td>–</td>
<td>–</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Length (cm) 25</td>
<td>–</td>
<td>–</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>OFC (cm) 34 (−1.6 SD)</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Age at examination (y) 60</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>Birth (gestational weeks) 10</td>
<td>Hypertelorism +++</td>
<td>–</td>
<td>Sitting age (months) 25</td>
</tr>
<tr>
<td></td>
<td>Weight (g) 2950 (−1.6 SD)</td>
<td>+</td>
<td>–</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Length (cm) 25</td>
<td>+</td>
<td>–</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>OFC (cm) Mean</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Age at examination (y) 12</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Chemicals, St Louis, USA) and counterstained using propidium iodide or DAPI.

A cosmid derived from D4S96, the 8p telomere probe and 7p distal probe (Oncor, Gaithersburg, VA, USA) and the whole chromosome paints 4 and 8 (AGS, Heidelberg, Germany/Oncor, Gaithersburg, VA, USA) were hybridised according to the manufacturer’s instructions. For the hybridisations, clone pGXba11/340 was used as centromeric control for human chromosome 4.

Genomic DNA was prepared from peripheral blood lymphocytes or EBV transformed lymphoblastoid cell lines from patients and their parents according to previously described techniques.22 23

Genotyping of chromosome 4p was performed using the following previously described microsatellite markers: D4S1182 (Acc ID GDB 197239), D4S43 (Acc ID GDB 124360), ADRA2C (Acc ID GDB 370834), HOX7 (Acc ID GDB 156991), D4S403 (Acc ID GDB 188106), D4S2366 (Acc ID GDB 684453), D4S2639 (Acc ID GDB 685881), and D4S2397 (Acc ID GDB 683982). A new microsatellite, 75B9Rep, was generated by one of the authors based on sequence information of cosmid 75B9A (Acc No Z69651) which is derived from the distal end of the Huntington’s disease cosmid contig.29 Oligomers were designed from sequences flanking the compound dinucleotide repeat (CT)_n(GCT)_m(CA)_n. The following primer sequences were used for the amplification of the repeat, forward primer 5'TCTGACTTTATC-CATTTAGTCTTG 3' and reverse primer 5'GAATCTTT-CCTGTCCAGCAT 3'. This primer set amplifies a 227 bp DNA fragment product. PCR reactions were performed in 10 µl volumes containing 100 ng DNA, 0.5 U Genecraft Taq polymerase, 1 x Genecraft PCR buffer, 2 µmol/l dNTP, 4 pmol/l of each primer, 1 µCi 32P-dCTP (3000 Ci/mmol, Amersham), and 2 mmol/l MgCl₂. Formamide (2%) was added to increase stringency of the reaction. After an initial denaturation of one minute, 30 cycles of one minute at 94°C, 30 seconds at 57°C, and 30 seconds at 72°C were carried out in a Crocodile IIIR (Appligene) thermocycler. The PCR products were resolved on 6% polyacrylamide gels flanked by a sequence ladder (M13, −40) as size marker. The Hu4/Hu5 (Acc ID GDB 249651) primer pair amplifies the CAG repeat of the huntingtin gene. Primer Hu4 has been published by Riess et al25 (primer sequence: Hu4 5' ATGGCGACCCTGGAAAAGCTGATGAA 3'), and primer Hu5 has been published by Rubinsztein et al30 (primer sequence: Hu5 5'GCGGTGGCCCGCTTGCTGCTGCTGC 3').

Figure 1 (A) Chromosomes 4 of patient 2 showing an additional G positive band in 4pter. (B) Chromosomes 4 of patient 4 showing same length of 4p but different G banded pattern.
At the beginning of our study of 22 WHS patients, we reanalysed the chromosomes in lymphocytes by standard Giemsa banding techniques. At a banding resolution of at least 450 bands per haploid genome,31 an additional small G positive band was observed on the distal short arm of one chromosome 4 in patients 1 and 2 (fig 1A) and an unbalanced translocation was suspected in patients 3, 4, and 5 (fig 1B). In patient 6, a deletion of 4p with breakpoints in 4p16.2 was suggested. Thus, we suspected an unbalanced translocation between the short arm of one of the chromosomes 4 and another unidentified chromosome in patients 1-5, while the cytogenetic aberration in patient 6 appeared to be a simple deletion.

Chromosomal analysis in all participating parents showed a normal karyotype. In patient 5 the father was not available. The remaining 16 patients of this study are described elsewhere (D Wieczorek, manuscript in preparation).

Different cosmids were used to confirm the clinical diagnosis of WHS in all patients. In patients 1, 2, and 5, a deletion of D4S96 (Oncor) and of cosmids pC847.351 and L228a7 on one homologue of chromosome 4 was noted (fig 2A). In patients 3 and 4, YAC 405D10 was also deleted on one homologue. In patient 5, the size of the deletion was determined by FISH only. Cosmids pC847.351, L21f12, and L228a7 and YACs 877G6 and 405D10 were deleted on one chromosome 4, whereas YACs 794D12, 225D2, and 435A11 were present on both chromosomes 4 (table 2).

Figure 2 FISH results in patient 4. (A) FISH with cosmid pC847.351 showing lack of signal in one chromosome 4p. (B) FISH with wcp(4) showing fluorescent signals on the entire length of both chromosomes 4 except for the terminal region of one chromosome 4. (C) FISH with distal 8p probe showing two signals in the distal region of 8p and an additional signal in the distal short arm of one chromosome 4.

Table 2 Extent and origin of the 4p deletion in patients 1–6

<table>
<thead>
<tr>
<th>Distance from 4pter (Mb)</th>
<th>Microsatellite marker</th>
<th>Cosmid</th>
<th>YAC</th>
<th>Patient 1</th>
<th>Patient 2</th>
<th>Patient 3</th>
<th>Patient 4</th>
<th>Patient 5</th>
<th>Patient 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>~200</td>
<td></td>
<td>pC847.351 (D4F26)</td>
<td>del</td>
<td>del</td>
<td>del</td>
<td>del</td>
<td>del</td>
<td>del</td>
<td>del</td>
</tr>
<tr>
<td>~1.2</td>
<td></td>
<td>pC678 (D4S96)</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>~1.9</td>
<td>L75B9 Rep</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>~2.0</td>
<td>D4S1182</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>~2.2</td>
<td>D4S43</td>
<td>M</td>
<td>NI</td>
<td>NI</td>
<td>NI</td>
<td>NI</td>
<td>NI</td>
<td>NI</td>
<td>NI</td>
</tr>
<tr>
<td>~3.0</td>
<td>Hu4Hu5</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>~3.3</td>
<td>L21f12 (D4S180)</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>~3.8</td>
<td>ADRA2C</td>
<td>NIL</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>~3.8</td>
<td>L228a7 (D4S81)</td>
<td>del</td>
<td>M</td>
<td>del</td>
<td>del</td>
<td>del</td>
<td>del</td>
<td>del</td>
<td>del</td>
</tr>
<tr>
<td>~5.5</td>
<td>Hox7</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>~7.0</td>
<td></td>
<td>877G6</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>~8.8</td>
<td>D4S2366</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>del</td>
<td>del</td>
<td>del</td>
<td>del</td>
<td>del</td>
</tr>
<tr>
<td>~13.0</td>
<td></td>
<td>405D10</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>~14.0</td>
<td></td>
<td>794D12</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>~16.5</td>
<td>D4S403</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>~19.8</td>
<td></td>
<td>225D2</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>~21.5</td>
<td></td>
<td>435A11</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>~23.0</td>
<td>D4S2639</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>~34.0</td>
<td>D4S2397</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

del: deleted; ND: not deleted; NI: not informative; M: maternally deleted.
FISH staining with a whole chromosome 4 paint (AGS/ Oncor) in all six patients gave hybridisation signals along the entire length of both chromosomes 4 except for the distal part of the aberrant chromosome 4p (fig 2B). Both chromosomes 8 showed hybridisation signals along the entire length with whole chromosome paint 8 (AGS), but also on one chromosome 4 in patients 1-5. FISH with an 8p telomere probe (Oncor, Gaithersburg, VA, USA) showed signals on both chromosomes 8 and an additional signal on one chromosome 4 (fig 2C).

Based on these findings we determined the karyotype of patients 1 and 2 as 46,XX,der(4)(t(4;8)(p16.3;p23.1)).ish t(4;8)(wcp4+, wcps8+, 8pel+, pC847.351−, D4S96−, 228a7−; wcps4+, wcps8+, 8pel+) and in patients 3, 4, and 5 as 46,XX,der(4),t(4;8)(p16.2;p21).ish t(4;8)(wcps4+, wcps8+, 8pel+, D4S96−, 228a7−, 405D10−; wcps4+, wcps8+, 8pel+).

FISH was also performed in the parents of patients 1-4 and the mother of patient 5. Normal results were detected with D4S96 (Oncor) and with the 8p telomere probe (Oncor). We conclude that the translocation t(4;8) occurred de novo in all patients. However, in patient 4 one could not exclude that the translocation may be inherited from the father.

To identify the chromosome involved in the translocation of patient 6, we used different paints and telomeric probes of G negative bands. Additional signals on chromosome 4 were noted with distal 7p probe (Oncor) (fig 3). We determined the karyotype in patient 6 as 46,XY,der(4),t(4;7)(p16.3;p23.1).ish t(4;7)(wcp4+, wcps8+, 8pel+, pC847.351−, D4S96−, 228a7−; wcps4+, wcps8+, 8pel+). Balanced translocations in his parents were excluded with FISH using D4S96 and 7pel in combination with pGXba11/340.

The results of the analyses of polymorphic markers are listed in table 2. Blood samples from the father of patient 5 were not available. Therefore, the size of the deletion was determined by FISH only. DNA from patient 4 was not available to identify the origin of the deletion.

In patients 1, 2, 3, and 6, the maternal allele was absent and in patients 4 and 5 the origin of the deletion remains undetermined. In patients 1, 2, and 6, the deletion 4p was at least 3.8 Mb in size and in patients 3-5 the size of the deletion can be estimated to be 13 Mb.

In our study of 22 patients with Wolf-Hirschhorn syndrome, a de novo translocation was present in 5/22 (22.7%) and a familial translocation in 3/22 patients (13.6%) (manuscript in preparation). In one additional patient (patient 5) a de novo translocation was suspected, but could not be confirmed. To our knowledge, such a high rate of proven de novo translocations in WHS has not previously been reported. This could be explained by the refined molecular-cytogenetic techniques such as FISH analysis and microsatellite analysis used here. In particular, de novo unbalanced translocations between the short arms of chromosomes 4 and 8 seem to be not uncommon in WHS. Müller-Navia et al.43,44 described one fetus and Petit et al.41,42 another male patient with this chromosomal aberration.

The breakpoints of 4p and 8p differ in our patients, which makes sequence homologies between these chromosomal segments less likely. Thus, it is of great interest that Kogi et al.45 and Gondo et al.46 described a new class of tandemly repeated satellite DNA elements on chromosome 4p and 8p. They identified a tandem array of several RS447 sequence copies in 4p15 and distal 8p. This repeat was suggested to be responsible for formation of inversion duplication 8p44 and might probably explain the higher frequency of translocations between 4p and 8p.

Moreover, other chromosomes also, for example chromosome 7 in patient 6, occur in de novo unbalanced translocations involving the short arm of chromosome 4. Our findings support the hypothesis of Reid et al.47 that cryptic complex chromosomal rearrangements are more common than usually disclosed by light microscopy of conventionally stained chromosomes. Selection bias was unlikely, as we investigated blood samples of all children with known WHS and with a tentative diagnosis of WHS.

Determination of the origin of the deletion showed that in all four patients in whom this was possible the maternal allele was absent, which is in contrast to published data. To avoid bias owing to familial translocations, which are mostly inherited maternally in a 2:1 ratio,36 the patients’ parents were also investigated by conventional karyotyping and FISH analysis. We reviewed cases in which the origin of the 4p deletion was determined and found 27 paternally inherited and six maternally inherited deletions.33,34

Thus, 82% of reported patients with WHS show a paternally derived deletion.

As to the published patients with maternally inherited deletions, the patient Val described by Anvret et al.38 had a more complex chromosomal rearrangement causing WHS. Further cytogenetic investigations were not possible. Patients 3 and 6 from the report of Dallapiccola et al.39 and case 2 of Thies et al.42 presented with a de novo, maternally inherited deletion with breakpoints in 4p16.1, 4p16.3, or 4p13, respectively. However, FISH analysis with whole chromosome 4 paint was not performed to exclude a cryptic translocation. In the patient described by Greenberg et al.,37 cryptic translocation in the mother was discussed, but not investigated. Patient 3 in the report of Kant et al.35 with maternal origin of the deletion had an unbalanced karyotype based on a cryptic translocation t(4;8) in the mother. Thies et al.42 described a third patient with de novo deletion and also a maternally inherited deletion. On the other hand, in two WHS patients with unidentified de novo translocations40 the deletion was of paternal origin.

Different explanations for the preponderance of paternally inherited deletions are possible, for example, statistical deviation or real biological phenomena such as increased mutation rates in sperm or genomic imprinting.40 An excess of rearrangements in male meiosis, related to differences between the mechanisms of sperm and egg production, have also been discussed.41

One aim of our study was to determine whether the WHS phenotype is influenced by the trisomic autosomal segment. The clinical findings in our patients 1-5, in previously published patients with familial translocations

Figure 3 FISH results in patient 6. FISH with distal 7p probe showing two signals in the distal region of 7p and an additional signal in the distal short arm of one chromosome 4.
t(4;8), 47–52 in patients with partial trisomy 8 owing to inversion duplication 45–50 or direct duplication, 43–45 respectively, and in patients with WHS 46 are compared in table 3. There are several clinical signs which are usually present in patients with partial monosomy 4p as well as in those with partial trisomy 8p, such as mental retardation, muscular hypotonia; prominent forehead, broad nasal bridge, large mouth, dysplastic ears, and congenital heart defects. Thus, these features are by no means specific enough to distinguish between the phenotypes.

The face in WHS is much more characteristic than in partial trisomy 8p and is not significantly influenced by the presence of this trisomic segment. All in all, it seems to us impossible to differentiate clinically between patients with WHS resulting from monosomy 4p and WHS resulting from unbalanced translocation 4p;8p. This agrees with the conclusions of other authors. 47–51

As to patient 6, to our knowledge, no other patient with a de novo translocation t(4p;7p) has been described before. 45–49 However, many patients with trisomy 7p resulting from familial translocations have been reported. These patients are not listed in table 3 because a considerable influence on the phenotype by monosomic autosomal segments cannot be excluded. Only those patients with distal duplication 7p are included. 49–51 The characteristic, clinically recognisable phenotype in trisomy 7p encompasses delayed closure of fontanelles, sparse or even lack of eyebrows, a short nose with a low and broad nasal bridge, small upper and prominent, full lower lip, micrognathia, hypotonia, congenital heart defect, and delayed speech development. 49–51 Macrocephaly and enlarged cerebral ventricles were only described in one patient. 50 One might speculate that relative macrocephaly in patient 6, which is highly unusual in patients with WHS, may be the result of the duplicated segment in 7p. Delicado et al. 66 noted intestinal malrotation with dilatation of the sigmoid and left colon in their patient, but excluded Hirschprung’s disease. Our patient presented with similar anomalies of the intestine, but excluded Hirschsprung’s disease.
patient 6, in contrast to patients 1-5, appears to be considerably influenced by the trisomic region of 7p (table 3).

In summary, we show that de novo translocations causing WHS are frequent and frequently occur as previously suspected. We recommend performing FISH analysis with wcp(4) in every WHS patient to exclude or confirm a de novo translocation as a common mechanism causing WHS. Also patients with cytogenetically visible deletions should be investigated by molecular-cytogenetic techniques to exclude cryptic rearrangements. Moreover, de novo translocations t(4p;8p) in WHS patients are more frequent than previously suspected.

Note added in proof
Since submission of the final version of this paper, 13 patients of this study have been published elsewhere.

We thank Professor Passarge for continuous support and for reading the manuscript, and Professor Horsthemke for helpful discussion. In addition, we thank Barbara Henke, Barbara Ulrich, Elke Jürgens, and Gudrun Rodepeker for excellent technical assistance and the parents for taking part in this study. We thank Dr Herdt Schüler for the results of previous chromosomal analysis in patient 1, Dr J J H Hamers for performing FISH with D4S10 in patient 2, Dr J M J Engelen for FISH in patient 4, and Dr Schröder and Professor A Gal for SSCGP analysis of the L1CGM gene in patient 6. We also thank Tracy Wright for the cDNA of the dystrophin receptor gene within chromosome 11 by providing the YACs. DW and KG were supported in part by a young investigators grant for the Medical Faculty University of Essen (DFG ORSP 1503 02/0). We also thank the Deutsche Forschungsgemeinschaft (Wi1440/4-1).

Correspondence to: Dr Wieczorek, Institut für Humangenetik, Universität zu Köln, Germany

Institut für Humangenetik und Anthropologie, Heinrich-Heine-Universität Düsseldorf, Germany

Dr A J H Hamers for performing FISH with D4S10 in patient 2, Dr JJM Altherr for the results of previous chromosomal analysis in patient 1, Dr Herdt Schüler for the results of previous chromosomal analysis in patient 1, and Professor Horsthemke for helpful discussion. In addition, we thank the Deutsche Forschungsgemeinschaft (Wi1440/4-1).

DAGMAR WIEZCZOREK* MARIO KRAUSE‡ FRANK MAJEWSKI‡ BEATE ALBRECHT‡ PETER MEINECKE‡ OLAF RIESS‡

GABRIELE GILLESSEN-KAESBACH*

Institut für Humangenetik, Universität zu Köln, Germany

‡Molekulare Humangenetik, Ruhr-Universität Bochum, Germany

§Institut für Humangenetik und Anthropologie, Heinrich-Heine-Universität Düsseldorf, Germany

Abteilung Medizinische Genetik, Altonaer Kinderkrankenhaus, Hamburg, Germany

Abteilung für Medizinische Genetik, Universität Rostock, Germany

Correspondence to: Dr Wieczorek, Institut für Humangenetik, Universität zu Köln, Germany

References

3 GABRIELE GILLESSEN-KAESBACH* OLAF RIESS‡

Mosaicism for a dup(12)(q22q13) in a patient with hypomelanosis of Ito and asymmetry

EDITOR—Hypomelanosis of Ito (HI) (MIM 146150) is an aetiologically heterogeneous physical finding characterised by a swirling pattern of hypopigmentation of the skin, typically distributed along the lines of Blaschko, reflecting pigmentary mosaicism and mosaicism of aneuploidy, segmental trisomies, or monosomies. As HI is not a specific disorder, it has also been referred to as pigmentary mosaicism. This report adds a further chromosomal anomaly which has not been described in pigmentary mosaicism previously.

The proband was the first son born to a 29 year old mother and a 30 year old father. There was no family history of recurrent abortions, consanguinity, or mental retardation. He was born by caesarian section at term after an uncomplicated pregnancy with a weight of 3560 g (50th centile), a length of 50 cm (50th centile), and an occipito-frontal circumference (OFC) of 32 cm (<3rd centile). The proband was the first son born to a 29 year old mother and a 30 year old father. There was no family history of recurrent abortions, consanguinity, or mental retardation. He was born by caesarian section at term after an uncomplicated pregnancy with a weight of 3560 g (50th centile), a length of 50 cm (50th centile), and an occipito-frontal circumference (OFC) of 32 cm (<3rd centile). Apgar scores were 8, 9, and 10. No complications were reported in the perinatal period. Despite delayed psychomotor milestones (sitting at 9 months, walking at 2 years, first words at 3 years), the first evaluation was only done at the age of 5 years. At the age of 10 years he was referred to our endocrinological outpatient clinic because of cryptorchism and glandular hypoplasias. At this time he was found to be a shy and uncommunicative boy. He showed moderate mental retardation and attended a school for handicapped children. He had a height of 1.3 m (3rd centile), a weight of 26 kg (3rd centile), and an OFC of 50 cm (<3rd centile). On physical examination, mild facial asym-
metry, epicanthic folds, a broad nose with a broad nasal tip, retrognathia, dysplastic ears, and a low set posterior hair line were noted (fig 1). Areas of linear hypopigmentation were distributed along the lines of Blaschko and were more evident on the legs. He also showed hemihypertrophy of the right leg, bilateral pes equinovarus, and pectus excavatum. There were no organic defects.

Chromosome analysis of peripheral lymphocytes showed the karyotype 46,XY[91]/46,XY,add(12q)[9]. The GTG banding pattern was suggestive of an interstitial duplication involving chromosomal segment q13-q21 or q13-q22 (fig 2). Parental karyotypes were normal. Fibroblast cultures were obtained from a normal and a hypopigmented skin area on the left arm. Fifty cells from each first subculture were analysed and identified 70% abnormal cells in the normal skin and 15% abnormal cells in the hypopigmented skin fibroblast culture. In addition, 2/50 cells from the normally pigmented skin showed the karyotype 46,XY,del(7)(q31).

Multiplex-FISH (M-FISH) allows the identification of chromosomes with distinct colours and was performed as described elsewhere. The M-FISH analysis showed that the der(12) consisted of chromosome 12 material only, excluding an interchromosomal rearrangement. No other abnormalities were noted. In order to characterise the der(12) in more detail a chromosome 12 specific multicolour bar code was constructed with YAC clones from the CEPH library, as previously described (table 1). On the der(12), two signals (blue) were observed for the 12q13 specific YAC 926h3 (fig 2). These signals were located close to each other indicating a duplication of the respective region. The 12q21-22 specific YAC 923a3 displayed a normal red signal proximal to the 926h3 double spot (fig 2). Using the GTG banding pattern in addition to the FISH results, the structure of the der(12) could be designated as dup(12)(pter-q13::q22-q13::q22-qter) (fig 2). The patient was thus mosaic for a pure trisomy of the segment 12q13-q21.
In many kinds of de novo chromosomal aberrations, it is impossible to determine the chromosomal origin of the extra material by banding patterns alone and characterisation of the rearrangement often needs FISH analysis with single copy probes. In the present case, a partial trisomy 12q was suspected from the G banding pattern and was confirmed by M-FISH within a single hybridisation experiment. Chromosome specific bar codes obtained from well characterised YAC clones have been shown to be useful for characterising chromosomal rearrangements. By performing multicolour FISH using a set of chromosome 12 specific YAC clones, the type of duplication in the proband was identified as inverted. Moreover, we could also differentiate between the two possibilities of inverted duplication occurring upwards or downwards on the chromosome arm. Using YAC mapping data and GTG banding pattern analysis, the rearrangement in the proband was defined as an inverted duplication in an upward direction involving the segment 12q13-q22. This case illustrates the potential of multicolour chromosome specific bar codes for the characterisation of intrachromosomal rearrangements by a single hybridisation experiment. Other methods, such as CGH and reverse painting, in general allow the accurate mapping of over-represented regions. However, CGH analysis would have failed in this case because of the mosaicism with a high percentage of normal cells. At best, reverse FISH could only allow the differentiation between direct and the two types of inverted duplication. In contrast, the fortuitous determination of a breakpoint YAC from the bar code enables mapping of the duplication at a molecular level, which would be impossible by CGH or reverse painting. The trisomy 12q13-q22 was detected in 10% of peripheral lymphocytes, in 70% of fibroblasts obtained from the normally pigmented skin, and in 15% of fibroblasts from the hypopigmented skin. Thus, the proportion of abnormal cells in the two different skin areas did not correlate with the skin pigmentation in the patient. This is not surprising as fibroblasts were investigated and it is expected that melanocytes, as the carriers of the biochemical defect, have a different distribution, because the two cell types have different embryological derivations. As a consequence, the selection of the skin biopsy area should not be guided by the localisation of skin pigmentation abnormality, and biopsy of more than one site may be required to identify the chromosomal anomaly in fibroblasts. A deletion 7q was found in two fibroblast cells of the normally pigmented skin, but not in other cells. We do not know if deletion 7q is the result of a cultural artefact or a third cell line in skin fibroblasts. The low proportion of abnormal lymphocytes shows the importance of analysis of a large number of cells. Moreover, a normal karyotype in lymphocytes of HI patients does not rule out a chromosomal defect, as has been shown for many HI associated chromosomal anomalies, which were detected only in fibroblasts but not in blood cultures. Like the proband described here, more than 70% of HI patients have one or more abnormalities of the central nervous system, the musculoskeletal system, faces, epidermal structures, and inner organs. The variability of the features associated with HI can be interpreted as a consequence of different chromosomal imbalances. Our proband also showed asymmetrical clinical features, which can also be considered as a non-specific sign of chromosomal mosaicism and as an indication for repeated chromosomal analysis of different tissues, especially if it is associated with mental retardation or dysmorphic features or both.

The proband's phenotype is different from other patients with trisomy of a more distal part of 12q. Trisomy for the segment 12q13-q22 has not been described previously and the characteristic phenotypic pattern cannot be determined. To our knowledge, only three other patients have been reported with an interstitial duplication 12q. All of them showed mosaicism suggesting that non-mosaic interstitial trisomy 12q may be lethal. Cytogenetic diagnosis of structural mosaicism enables accurate genetic counselling of families. Given that the parents have normal karyotypes, as in the present family, the recurrence risk is very small. Mosaicism of structural abnormalities with a 46 chromosome complement is rare, and a significant proportion of such cases are direct or inverted duplications. If chimerism were excluded, a postzygotic origin of the rearrangement in a chromosomally normal conceptus can be postulated for intrachromosomal duplications, which would rule out the small risk of parental gonadal mosaicism.

In summary, the present case stresses the importance of careful chromosomal analysis of different tissues in patients with pigmentary anomalies or asymmetrical clinical findings or both, and has shown the usefulness of multicolour FISH with single copy probes resulting in chromosome specific bar codes to characterise intrachromosomal rearrangements.

This study was supported by the Deutsche Forschungsgemeinschaft (Sp 460/3-1) and the Friedrich-Baur-Stiftung.
An analphoid supernumerary marker chromosome derived from chromosome 3 ascertained in a fetus with multiple malformations

EDITOR—We report a case in which a termination of pregnancy for fetal abnormality at 18 weeks’ gestation showed a supernumerary marker chromosome. This extra chromosome did not hybridise to any alphoid probes and was found to have a chromosome 3 origin when investigated by M-FISH.

An anomaly ultrasound scan was performed because of raised alpha-fetoprotein and beta HCG levels at 17 weeks’ gestation in a 32 year old, primigravida mother. The scan showed a large and cystic left kidney, banana sign, and absent cisterna magna, and signs of an open sacral spina bifida. The pregnancy was terminated and necropsy showed a male fetus consistent with 18 weeks’ gestation with no dysmorphic facial features. A high arched palate with a small amount of postnuchal oedema was noted as well as a single transverse palmar crease on the right hand.

Inspection of the back showed a 1.3 cm long lumbosacral myelomeningocele with protruding lower lumbar spinal cord. On internal examination the cerebral hemispheres were fully cleaved and appeared fluctuant suggesting the possibility of internal hydrocephalus. The posterior fossa of the brain was reduced in anteroposterior diameter as well as appearing deep and funnel shaped, and the extension of the cerebellar tonsils was below the level of the foramen magnum. These findings are consistent with Arnold-Chiari malformation. There was marked asymmetry of the kidneys; the right kidney showed normal fetal lobation and shape but the left kidney was very large and had thin, translucent, subcapsular cysts, especially at the lower pole. The cut surface showed a poor demarcation between the cortex and medulla and the presence of cysts in most of the renal parenchyma. These findings are consistent with cystic renal dysplasia. The placenta was unremarkable and the cord had three normal blood vessels.

The chromosomes of the abortus were examined from fetal skin fibroblasts derived using the method of Fisher et al.1 The metaphases from the fetal fibroblasts and parental blood were GTL banded using a modification of the method of Seabright.2 The abortus showed a male chromosome 3 karyotype with a metacentric supernumerary marker chromosome approximately the size of a G group chromosome in 17 out of 30 (57%) metaphases examined in primary culture. The tetrasomy was identified when a signal at the marker’s primary constriction was detected using one layer of FITC conjugated anti-digoxigenin for digoxigenin labelled probes or TRITC conjugated anti-avidin for biotin labelled probes.

Multiplex fluorescence in situ hybridisation (M-FISH)3 was performed on the marker using the Spectra Vision Assay™ (Vysis). The protocol and probe set was as specified in the SpectraVision™ Assay protocol. The images were captured on a Provis microscope (Olympus) equipped with a motorised eight position turret with an epifluorescence filter set designed for the fluoros used. Analysis was performed using M-FISH software supplied by Perceptive Scientific International Ltd (PSI). Using M-FISH, the marker was identified as being from chromosome 3.

FISH with the 3p and 3q subtelomere probes showed hybridisation to the 3q subtelomere probe on the ends of both arms (fig 1b) and wcp3 hybridised to the whole of the marker (fig 1c). Subsequently CGH4 was applied using DNA extracted from fetal skin and testis. The CGH profiles were analysed using Vysis Quips CGH software following hybridisations to 10 metaphases from each tissue. The CGH profiles showed a significant gain of material in distal 3q26 in fetal skin and in DNA extracted from testis, a tissue not cultured in vitro. These profiles suggested that the tetrasomy may not include the most distal 3q bands (q28 and q29); however, CGH profiles at the extreme ends of chromosomes are known to be problematic because of variable repeat sequences. Conventional FISH with YAC 919f12 (3q29) confirmed that the marker contained two copies of this sequence (fig 1d). Owing to the instability of the marker in culture, we were unable to perform any investigations with constitutive centromere binding proteins. The conventional cytogenetics was re-evaluated and suggested that the marker was an inverted duplication from chromosome region 3q26.2→qter.

Molecular analysis was undertaken to check for the biparental inheritance of the two normal chromosome 3 homologues and to find the parental origin of the marker chromosome. DNA was extracted from fetal tissue and peripheral blood from the parents. Primer sets were used to detect polymorphic microsatellite repeat sequences along the length of chromosome 3 and it was found that the marker was maternal in origin and that the fetus had inherited one normal chromosome 3 from each of his parents and so excluded uniparental disomy 3.

As far as we are aware, the marker described here is the first instance of an inverted duplication causing tetrasomy for chromosome region 3q26.2→qter. Our patient had a prenatally detected lumbosacral myelomeningocele, Arnold-Chiari malformation with possible hydrocephalus and cystic renal dysplasia, and as a result was terminated at 18 weeks’ gestation. Arnold-Chiari malformation is seen in approximately 1 in 1000 livebirths5 and is often associated

Labs, UK) was used to counterstain the chromosomes. A Carl Zeiss Axioskop epifluorescent microscope fitted with a Pinkel Fluorescent No 83 filter series (Chroma Technology) was used to examine the hybridisation, while a cooled charged couple device camera captured the images. Smart-capture software (Digital Scientific, Cambridge, UK) was used to analyse and visualise the digitised data. The normal homologues acted as internal controls for the FISH. The marker was screened with a library of alphoid centromere specific probes at 1× SSC in 50% formamide stringency, but failed to hybridise to any of the probes, suggesting that what appeared to be the marker’s primary constriction did not contain alphoid repeats. This was confirmed when an all centromere alphoid mixture used at low stringency (2× SSC at room temperature) showed strong signal at all centromeres except for the marker (fig 1a).

Letters

www.jmedgenet.com
with spina bifida with myelomeningocele and hydrocephalus. Schinzel observed lumbosacral myelomeningocele and Arnold-Chiari malformation in single incidences of dup 3q23→25→q27 to qter. The marker breakpoint is thought to be at 3q26.2, so the marker contains two copies of 3q26.3, which Ireland et al considered to be the location of the Cornelia de Lange syndrome gene and the duplication 3q syndrome critical region. The only features seen which may be associated with de Lange or duplication 3q syndromes, and may also be coincidental, were high arched palate, a transverse crease on the right hand, and left cystic renal aplasia. However, our case does prove the need to do a detailed karyotype where upper and mid neural tube defects are associated with other abnormalities.

Portnoi et al. reported a similar supernumerary marker chromosome in a healthy 22 year old male of normal intelligence. He was not dysmorphic, but was referred because of skin pigmentary anomalies showing hyperpigmented brown macular streaks following the lines of Blaschko, the onset of which occurred aged 10 to 12 years. The normal skin fibroblasts showed no evidence of the marker, but blood and hyperpigmented fibroblasts showed 30% and 6% cells respectively with the marker. Their marker was analphoid, acrocentric with a breakpoint 3q27.1. The lower level of mosaicism in vivo, proven tissue specificity, and the smaller size of the marker may account for the ameliorated phenotype in this patient compared with our fetus. Another neocentromere located at 3q26 was reported by Wandell et al and was observed in a father and daughter, ascertained because of developmental delay in the child along with hypertelorism, epicanthus, and a large head. The father had borderline mental retardation. In this case the normal centromeric region was deleted from the chromosome 3 and had formed a small linear marker chromosome. The two distal portions of the deleted 3 had rejoined and a neocentromere was present at 3q26. Interestingly, the neocentromere formed microtubule associated kinetochores of the same size as other large chromosome kinetochores, but was found to be weakly positive with anticientromere (CREST) antibodies, whereas the normal centromere on the small marker chromosome showed a reduced kinetochore size but a strong CREST antibody signal.

Our marker increases the haploid autosomal length of the cell by about 1.5%, but is mosaic (57%) in primary cultures. Other analphoid markers which give rise to tetrasomies of the duplicated regions are also found to be unstable in long term or fibroblasts cultures and are often lost altogether. It seems remarkable that these markers seem to be stable for many cell generations in vivo only to be lost so rapidly in culture. This instability in vitro makes it difficult to judge how much effect our marker had on the phenotype, although we know that it was present in tissues from two different embryonic lineages (fetal skin and testis).

The centromere is an essential structure of the chromosome and chromosomes lacking an active centromere will eventually be lost during subsequent cell divisions. The

Figure 1 Molecular cytogenetic characterisation of the marker chromosome. Arrow indicates marker chromosome. (a) All centromere alphoid mix. (b) 3q subtelomere probe (196f4) green, 3p subtelomere probe (dJ11286B18) red. (c) Whole chromosome paint 3. (d) 3q29 probe (YAC 919f12).
centromeric DNA is composed of highly repetitive A+T rich sequences. The most investigated is alpha satellite DNA which in humans is a 171 bp sequence tandemly repeated many times such that between 2 and 4 Mb may be present in a typical centromere.15 There seems to be no similarity in the primary DNA sequence between species and a lack of centromeric DNA conservation throughout evolution makes it difficult to equate its sequence to function.14 Nonetheless, the repetitive nature of the DNA and its A+T content appears to be a consistent feature of many organisms and suggests that it is significant in centromere function.

Supernumerary marker chromosomes (SMCs) have a prevalence of less than 1 in 1000 in the general population16 and in recent years in situ hybridisation using alpha satellite probes allows the origin of most of the SMCs to be identified. However, a minority do not hybridise to any of the alphoid probes,19 but nevertheless these analphoid markers are more or less stable in vivo and in vitro,14 20 suggesting the presence of some centromeric properties, unlike a true acentric chromosome. Two main explanations have been suggested. Firstly, a complex rearrangement has deleted the normal centromere to such an extent that, although it can still function, the highly repetitive alpha satellite probes cannot hybridise to it. Secondly, when the normal centromere was lost, a latent centromere (or neocentromere) was activated in a region not normally associated with centromeric function.17–21 This latter explanation is currently more favoured. Unfortunately, as marker chromosomes tend to be found by chance, only the endpoint is seen, never the intermediate steps nor the mechanism in action by which the neocentromere may be formed.

Recent sequencing of the centromeric region of a chromosome 10 derived alphoid marker has shown that compared with the sequence of a normal centromere the marker centromere is lacking in repetitive sequences. The evidence from this neocentromere, and that from the deactivation of centromeres in dicentric chromosomes, is more proof that repetitive sequences per se do not dictate centromere activation in dicentric chromosomes, is more evidence from this neocentromere, and that from the deactivation of centromeres in dicentric chromosomes, is more evidence from this neocentromere, and that from the deactivation of centromeres in dicentric chromosomes.

We are grateful to Miss Sarah Beal for excellent technical assistance and we would like to acknowledge Andrew Sharp for the parental origin studies. We wish to thank Dr L Kearney and the National Institutes of Health and Molecular Medicine Collaboration for the alphoid probes and also to wish to thank the Wellcome Trust for their financial assistance in the purchase of the image enhancement equipment. The CGH profiles were obtained during the “Advanced Molecular Cytogenetics” course held at Cold Spring Harbor Laboratory, March 1999. JAC would like to thank the course tutors, Dr Thomas Reid and Dr Evelin Schrock, for their expert help during the course, and the Wellcome Trust for financial assistance to attend Cold Spring Harbor.

ANNETTE E COCKWELL*
BARBARÁ GIBBONS†
ISABELLA E MOORE‡
JOSEPH A CROLLA*

*Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, Wiltshire SP2 8BJ, UK
†NE Thames Regional Cytogenetics Laboratory, 2nd Floor Queen Square House, Institute of Neurology, Queen Square, London WC1N 3BG, UK
‡Histopathology Department, Level E, Southampton General Hospital, Tremona Road, Southampton SO9 4XY, UK

Correspondence to: Dr Cockwell, wessex.genetics@dial.pipex.com

Why patients do not attend for their appointments at a genetics clinic

EDITOR—When a patient does not attend a scheduled appointment, or cancels so late that a replacement cannot be found, there is a cost to the health care system in terms of personnel time, extended waiting lists, and the loss of potentially beneficial services to patients who miss their visit. These costs are particularly important for genetics clinics because a great deal of preparation is often required before a clinic visit. Preparation may include sending out a family history questionnaire from which a pedigree diagram is constructed, and a review of the medical reports and charts of the patient and other family members. In the case of rare genetic conditions, a preliminary review of publications/computer database search may be conducted and research laboratories may be sought which would be willing to receive patient samples. Furthermore, genetics departments typically set aside at least an hour for each new patient visit.

Failed appointment rates at community and university medical clinics have been reported to range between 10 and 30%. Studies involving hospital clinics set in low socioeconomic status populations have shown no show rates in the upper end of this range, whereas family practice clinics have reported fail rates as low as 5%.

There is some evidence to suggest that missed appointments may be more likely among certain demographic groups, such as young adults and adults with young children, patients with lower socioeconomic and educational status, and those with larger families. Moreover, geographical distance from the clinic or the inability to obtain transport or both have been found to impede appointment keeping. Sex and race have not been associated with compliance.

Problems with communicating to patients about the timing or nature of an appointment and in providing them with information about their diagnosis may lead to missed appointments, and a strong recommendation by the referring physician has been shown to have a major benefit on compliance.

There may be a relationship between clinic attendance rates and certain attitudinal factors. There is evidence that patients are more likely to miss their appointments if they perceive the appointment as less urgent or less helpful. Other potential psychological determinants of health care use are variables from the Health Belief Model (HBM), including people's perceived risk of developing a particular health condition, perceived severity of the health condition, and the perceived benefits, weighed against the costs, of an associated health behaviour. The HBM has been applied to a variety of health behaviours, such as breast cancer screening practices.

Patients' beliefs about the personal costs of medical clinic visits have also been shown to affect appointment keeping rates.

The Children's Hospital of Eastern Ontario (CHEO) genetics clinic provides diagnostic and counselling services to patients of all ages, including routine advanced maternal age (AMA) counselling, personal or family history of known genetic disease, and the assessment of subjects whose condition is of unknown cause. At a time when clinical demands on our programme are increasing, we became concerned about the negative impact of no shows on our ability to deliver efficient and timely services. On that basis we undertook a study in order to determine the approximate rates of appointment cancellations and no shows at different Canadian genetics clinics, and to identify factors that may be associated with missing clinic appointments. It was hoped that some associated variables might be amenable to modification and lead to improved attendance rates.

Twenty genetics clinics across Canada responded to a survey regarding the frequency of broken appointments (no shows and cancellations). The centres provide genetic services free of charge as part of their respective provincial health services. The non-attendance rate at the CHEO genetics clinic was also determined. The clinics were separated into three groups according to number of patients seen per year; eight clinics had fewer than 500 patient visits per year (small), eight saw between 500 and 2000 patients per year (medium), and five clinics saw more than 2000 patients per year (large). Representatives of each genetics clinic, usually a medical geneticist or clinic administrator, completed a single page postal questionnaire designed to assess their estimated rates of missed appointments, the extent to which they considered these rates to be a problem, and the strategies they used to reduce non-attendance.

The CHEO genetics clinic operates according to the following pre-appointment procedure. Patients are referred to the clinic by their physician. The clinic receptionist schedules the appointment and, for non-AMA cases, sends the patient a family history questionnaire and consent form for release of medical information. Before the clinic appointment, the patient's case is reviewed with relevant documents and, for non-AMA patients, a family pedigree is drawn. Non-AMA patients are contacted by telephone 24-48 hours before the scheduled visit in order to confirm their attendance (AMA patients do not receive a reminder telephone call). At all stages, patients are asked to cancel if they do not plan to attend their clinic visit.

Data were collected by telephone from two groups of patients originally scheduled for clinic between 1 February 1998 and 30 April 1999: 75 who attended their appointments at the CHEO genetics clinic and 62 who either did not show up for their appointments or who cancelled with less than 12 hours notice. It should be noted that late cancellations (less than 12 hours notice) were counted as no shows because the ensuing consequences were considered to be equivalent. The other surveyed genetics clinics provided separate rates for cancellations in general and for "pure no shows".

A parent was interviewed if the index patient was under 18 years of age. All participants (total n=137) were English or French speaking and lived in the Ottawa-Carleton regional catchment area of approximately 1 million.

Two slightly different versions of the survey instrument were used, one for each group of participants. The instrument was developed by the authors to assess information in four main content areas: (1) demographics (age, marital status, children, education, family income, language spoken at home); (2) referral and genetic service information (reason for referral, the degree to which patients understood these reasons, the quality of explanations provided by referring physicians regarding these reasons, whether or not patients were referred at their own request, and the degree to which referring physicians recommended the genetics appointment); (3) environmental factors (transport, distance from home to the clinic, and arrangements for child care and taking time off work); and
(4) psychosocial factors (including perceived importance of the clinic visit as well as Health Belief Model variables). A variety of response formats were used, including yes/no, Likert scales, and open ended questions which were later categorised for analysis. The bilingual survey took approximately 15 minutes to complete and was administered by a trained research assistant.

Descriptive statistics were performed to assess the nature of the scheduled appointment at the clinic, as well as the reasons provided by non-attendees for missing their scheduled visit. Attendees and non-attendees were compared on the basis of variables in the four main content areas described above, using independent sample t tests and chi-square analyses as appropriate. Two by two factorial analyses of variance were also conducted in order to assess potential interaction effects between group membership and other relevant variables.

Representatives of 27 Canadian genetics clinics were sent copies of the no show survey and 20 (74%) completed and returned the survey. A summary of no show and cancellation rates for the three sizes of clinics is provided in table 1; data from the CHEO genetics clinic are included. Approximately half the data were estimated while the remainder were based on actual records of missed visits. The rate of combined no shows and cancellations at individual centres ranged between 2% and 25%, with an overall mean of 12%. Non-attendance rates were perceived as a problem by most genetics clinics across Canada. However, large and medium centres perceived a greater problem than did smaller centres, despite having lower non-attendance rates (mean rates were 10.8%, 15.1% for large, medium, and small centres, respectively). If cancellations are eliminated, the mean overall rate of no shows is 6.6%.

For comparison purposes, failed appointment rates were obtained for a variety of other medical clinics at CHEO, including audiology, child development services, neuromuscular medicine, occupational therapy, physiotherapy, rehabilitation medicine, speech/language, and spina bifida clinics. The no show rates for 1998 ranged between 6% and 15%, yielding an overall mean of 11%.

The no show prevention strategies cited by the genetics clinics across Canada were compared. The centres were subdivided by their total non-attendance rate into three groups: low rate (5-11%), medium rate (12-18), and high rate (19-25%). The impact of the strategy most commonly cited (reminder phone call) could not be assessed because it was used virtually universally. However, the strategy of sending reminder letters to the patient was used most often by centres which reported low non-attendance rates.

A total of 258 households (120 potential attendees and 138 potential non-attendees) were telephoned regarding the study, of which 137 (53%) participated in the survey (75 attendees and 62 non-attendees). Among the subjects/families who did not participate, 24 (20%) could not be reached because of repeated busy signals or answering machines (no messages were left). Another 24 (20%) asked the interviewer to phone back at another time, and gave a similar response upon subsequent phone calls, even when the call was made at a prearranged time. Nineteen (17%) of the telephone numbers were either not in service or were wrong numbers, and two of the households (2%) reported that the patient (or parent of the patient) lived elsewhere and did not have a telephone. An additional 12 (10%) subjects had a language barrier. Finally, 30 (25%) of the non-participants stated that they were not interested in doing the survey. There were more no shows (76; 63%) than clinic attendees (45; 37%) among the households that did not participate in the survey.

Table 2 provides a description of participants on the basis of key demographic variables. The average age of respondents was 36 years; where the respondent was a parent of the patient, the average age of patients was 5 years. The large majority of respondents were married/common law (84%) and had children (77%).

Attendees and non-attendees did not differ significantly on the basis of age (p=0.21), marital status (p=0.59), presence of children (yes or no; p=0.21), number of children (p=0.09), language spoken most often at home (p=0.11), or family income (p=0.11). Two demographic variables did yield significant results. Non-attendees had a lower mean level of education than attendees (p<0.05), and patients who were planning to have children (or more children) were more likely to have attended their clinic visits than those who were not planning on starting or expanding their families (p<0.05) (table 3).

Table 3 outlines the main reasons given by non-attendees for missing appointments. The reasons differed significantly between those who were referred for prenatal diagnosis (PND) services and those referred for other reasons (p<0.05). The main reasons given by all

<table>
<thead>
<tr>
<th>Variable</th>
<th>Attendees (n=75)</th>
<th>Non-attendees (n=62)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>No</td>
<td>% of group</td>
</tr>
<tr>
<td>20-29 years</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>30-34 years</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>35-40 years</td>
<td>43</td>
<td>58</td>
</tr>
<tr>
<td>>40 years</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married/common law</td>
<td>65</td>
<td>87</td>
</tr>
<tr>
<td>Single</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Divorced, separated, or widowed</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>No of children</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>21</td>
<td>28</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>32</td>
</tr>
<tr>
<td>2-3</td>
<td>27</td>
<td>36</td>
</tr>
<tr>
<td>>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Planning more children</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>42</td>
<td>56</td>
</tr>
<tr>
<td>No</td>
<td>23</td>
<td>31</td>
</tr>
<tr>
<td>Language spoken at home</td>
<td></td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>48</td>
<td>64</td>
</tr>
<tr>
<td>French</td>
<td>19</td>
<td>25</td>
</tr>
<tr>
<td>Both English and French</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Other</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Education†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than high school</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>High school</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Some college or university</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>College or undergraduate degree</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Graduate degree</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>Family income†</td>
<td></td>
<td></td>
</tr>
<tr>
<td><$20 000</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>$20 000–$40 000</td>
<td>16</td>
<td>25</td>
</tr>
<tr>
<td>$40 000–$75 000</td>
<td>19</td>
<td>30</td>
</tr>
<tr>
<td>>$75 000</td>
<td>23</td>
<td>36</td>
</tr>
</tbody>
</table>

*Attendees had a higher overall education level than non-attendees, χ²(2) = −2.29, p<0.05.
†Attendees were more likely to be planning more children than non-attendees, χ²(2) = 6.58, p<0.05.
‡Numbers are smaller for this variable owing to missing data.
non-attendees for missing appointments were being “too busy” or unable to get time off work, forgetting the appointment or having a scheduling conflict, and believing the appointment to be non-mandatory or unimportant. Reasons associated with the PND group included being unsure or afraid of the risks associated with amniocentesis, having recently suffered a miscarriage, experiencing morning sickness on the day of the appointment, and wanting to wait for laboratory test results (such as maternal serum screening) before deciding whether to be seen at the genetics clinic.

Slightly less than half (46%) of all participants were scheduled to meet a medical geneticist at the clinic, and the remainder were scheduled to meet a genetic counselor. There was no significant difference between attendees and non-attendees with respect to the type of health professional they were scheduled to see at the clinic (p=0.86).

Approximately half (51%) of all participants were scheduled for appointments associated with advanced maternal age prenatal screening. Another 42 patients (31%) were being seen in order to seek a specific diagnosis; 23 patients (17%) were scheduled to discuss genetic risk information/counseling, and only two respondents (1.5%) indicated that they did not know the reason for their referral to the genetics clinic. Attendees and non-attendees did not differ on the basis of their reasons for referral to the clinic (p=0.46). Moreover, attendees were no more or less likely than non-attendees to have been referred to the clinic at their own request (p=0.92), to understand well the reasons for their referral (p=0.17), or to indicate that their physicians had highly recommended the appointment (p=0.15) or had explained the reason for referral well (p=0.13).

It was hypothesised that some of the referral related variables (table 4) may have been confounded with patients’ education level, and so additional analyses were performed in order to separate these effects. A dichotomous version of the education variable (originally in a Likert scale format) was created by cutting scores at the median, yielding the two categories of “high” (at least a college diploma or university undergraduate degree) and “low” (high school education or less). Two by two analyses of variance showed a significant group by education level interaction (p<0.05) and the reported quality of the explanation of these reasons by their referring physicians (p<0.05). An examination of cell means indicated that among patients with a higher education level, attendees understood their reasons for referral better and claimed their physicians had explained these reasons better than did non-attendees. No such group difference existed among patients with a lower education level.

We hypothesised that patients with a higher education level would more likely have been referred to the genetics clinic at their own request, because of their presumed greater knowledge about genetic health services. A chi-square analysis showed this not to be the case (0.55<p<0.60).

The relationship between non-attendance and environmental variables is shown in table 5. Patients who reported having to arrange for child care in order to attend a clinic visit were more likely to have missed their scheduled appointments than those who indicated no such requirement (p<0.05). Although having to take time off work to attend a clinic visit was not associated with a greater likelihood of non-attendance (0.70<p<0.75), those respondents who were not paid for such time off were more likely to have missed their appointments than those who were able to take paid leave from work to attend the clinic (p<0.05). No significant differences between attendees and non-attendees were found in methods of transport to the clinic (0.20<p<0.25) or travel time to the clinic (0.10<p<0.15). Failure to make contact by telephone to remind the patient of the clinic visit occurred in 10 of the no shows and none of the attendees.

The relationship between non-attendance and psychosocial variables is shown in table 6. Respondents who attended their appointments perceived the clinic visit to be more important than respondents who did not attend (p<0.01). With regard to the Health Belief Model variables, no significant group differences were found in terms of perceived severity of the health condition (or potential health conditions) which were to be discussed during the appointment (0.65<p<0.70). Moreover, the two groups did not differ significantly with respect to their perceived risk of having (or eventually developing) these health conditions (0.60<p<0.65).

Non-attendance was significantly related to perceived benefits and disadvantages of the genetics appointment. Specifically, patients who missed their appointments perceived the potential benefits of the clinic visit to be less
The results of this study help to quantify the problem of missed appointments at genetics clinics across Canada. Over a one year period, approximately 11% of patients scheduled for visits at genetics clinics either cancelled or did not show up for their appointments. When cancellations are eliminated, this number decreases to 6%, representing the rate of “pure no shows”. In comparison, 11% of patients failed to show up for their appointments at other non-genetics outpatient clinics at the Children’s Hospital of Eastern Ontario (CHEO). These values are relatively low compared with the 10-30% range frequently reported.12 Family practice centres have fewer broken appointments than adult medical centres.3 Perhaps the family orientation of paediatric and genetics clinics is more akin to family practice and reduces the likelihood that appointments will not be kept.

It should be noted that in the survey of the CHEO genetics clinic, the non-attendees group included cancellations with less than 12 hours notice which, owing to their negative consequences, were considered equivalent to no shows. This distinction between early and late cancellations was not requested from the other genetics clinics surveyed in this study (they were simply asked to report two separate numbers for “pure” no shows and cancellations, respectively). If late cancellations had been included in the no show rates provided by the other clinics, the resulting no show rates would probably have been somewhat higher than reported.

Although an 11% rate of failed appointments at Canadian genetics clinics is comparatively low, it is still a sizeable barrier to the optimal provision of genetic health services. Unlike many clinics, where multiple bookings are common and visits are usually short, genetics clinics expend extensive resources for pre-appointment planning and generally allocate an hour for a clinic visit.

This study suggests a number of factors which may contribute to the problem of missed appointments. The most commonly stated reasons for missed appointments at the CHEO genetics clinic were scheduling conflicts and inability to get time off work. As these are predictable factors, it is surprising that more than half of respondents cited them, despite being called 24-48 hours before the appointment. The question arises as to whether the answers provided by patients over the telephone concealed underlying reasons such as anxiety, confusion, or personal belief systems, which lead to last minute decisions not to attend, or were too personal to admit to the secretary or the research assistant.

Some psychosocial variables appeared to contribute to the non-attendance rate. Patients who attended their scheduled appointments thought their visit to the genetics clinic to be more important than those who did not attend. This is similar to previous research which has found perceived urgency of medical clinic visits to be significantly related to compliance,13 though urgency and importance may represent relatively distinct constructs.

Patients who attended the clinic also perceived more benefits and fewer barriers associated with their appointments than did non-attendees. This supports the Health Belief Model10 and previous research, which has indicated such health beliefs to be important predictors of health behaviours.8 11 12 Apparently, for non-attendees, the potential costs of the clinic visit (such as the anxiety or guilt that may be experienced after learning of one’s carrier status) outweighed the possible benefits (such as relief from uncertainty or clarification of one’s options). In contrast, the perception of the benefits of attending the genetics clinic appeared to outweigh the perceived disadvantages for those who kept their appointments.

We found that certain psychosocial factors may play a role in non-attendance, but not all of the anticipated effects were found. For example, perceived severity of the health condition (or potential health condition) for which patients were referred to the clinic, along with the perceived risk of having or eventually facing that health condition, were unrelated to clinic attendance. The former result is not surprising, given that the “perceived severity” component of the Health Belief Model has been shown to have limited value in predicting a variety of health behaviours.11 However, a high perceived risk has been found to predict a number of health behaviours, including mammography,5 12 genetic testing for susceptibility to breast cancer,13 14 and

![Table 5](image)

![Table 6](image)
cystic fibrosis carrier screening. One possible explanation for the absence of such an effect in this study lies in the nature of the “health condition” in question. Previous research has examined patients’ health beliefs with respect to a single, specific illness or procedure. In the present study, patients were referred to the genetics clinic for a variety of reasons; consequently, a more general question regarding perceived risk was included in the survey which permitted patients to respond according to their own situation. This lack of specificity may have led to a varied interpretation of the question, thus reducing the strength of the “perceived risk” and “perceived severity” variables.

If the above health beliefs are the true reasons that underlie the stated explanations (for example, could not get time off work) given by some patients for missing their appointments, this holds important implications for the provision of adequate public education regarding genetics related health issues. It is widely accepted that a thorough explanation of the risks and benefits associated with a given medical intervention is required in order for patients to provide informed consent. It is not clear how such standards extend to different contexts, such as a genetics clinic appointment. Greater public awareness of the services provided by genetics professionals will provide patients with a balanced and accurate understanding of the importance, risks, and benefits of a scheduled appointment. The fact that patients with a higher education level (at least an undergraduate university degree) were more likely to attend their appointments than those with less education reinforces this need for greater public education. Studies have found that people of lower educational status are more likely to miss their medical appointments. People with a university education probably have greater access to (and experience with) health related information found in scientific journals, books, and news magazines. Delivery of health information to those who have less formal education may facilitate the use of health services by more subjects and families. An alternative interpretation of the education effect is equally possible: those working in higher level positions may simply have greater job flexibility and may thus have had less difficulty attending their clinic appointments.

Other demographic variables, including age, marital status, number of children, language spoken most often at home, and family income, did not differentiate between attendees and non-attendees. This is encouraging, in that most of these variables are not easily targeted by clinic based interventions to improve attendance rates. One exception may be language, which has been subject to limited previous research and is an important variable to assess in a country with two official languages; in our genetics clinic services are regularly provided in French and English. Our finding that language does not appear to be a barrier to attendance is encouraging, but the question may need to be addressed for patients who do not speak either official language. People not fluent in English or French were excluded from the sample. There were 12 people who did not participate in the survey because of a language barrier. Nine of these were in the group who missed their appointments, so this is an issue that may merit further investigation, as a language barrier would represent a potential target for intervention.

It should be noted that the lack of significant results for many demographic variables may be in part because of the narrow response ranges associated with the corresponding survey items. For example, the mean age of survey respondents was quite young (36 years) and people over the age of 45 were virtually absent from the sample. Studies of adult non-genetics clinics would encompass a wider range of patient ages, leading to a greater likelihood of significant age effects. Moreover, the majority of participants were married (84%) and had children (77%). Only 10 participants (7%) reported a family income of less than $20,000, indicating a clear under-representation of low socioeconomic status families. The lack of any association with family income may also reflect universal access under the Canadian health care system. Previous studies showing significant effects of socioeconomic status have generally been conducted in the United States, a country which lacks universal health care.

The quality of information given to patients by their referring physicians about the referral to genetics was not associated with the overall rate of missed appointments. However, it did play a role in the specific subgroup of patients with a higher education level. Among those participants, the attendees reported that they understood the reasons for their referral better, and that their physicians had explained these reasons better, than those who did not attend. It appears that while patients with a higher education level are more likely to attend their appointments, they are also more likely to require thorough explanations of the rationale for the appointment before deciding whether or not to attend. Thus there may be some argument for improving the quality of pre-appointment information provided to patients by health care professionals.

These results lend some support to previous research indicating that patients who understand the reasons for their referral relatively well are more likely to attend their clinic appointments. Contrary to previous studies, however, the degree to which the referring physician recommended the genetics clinic appointment did not influence the likelihood of attendance.

Finally, although difficulties with scheduling conflicts, transport, and inability to take time off work may often at least in part conceal more important underlying reasons for non-attendance, they may sometimes compromise appointment keeping. Patients who had to arrange for child care in order to attend the clinic were more likely to miss their appointments, and this confirms previous results indicating that broken medical appointments are more likely among larger families and those with younger children. The need for child care is an important barrier to the provision of health services at a genetics clinic because families comprise most of the patient population. Provision of day care facilities within medical institutions might prove cost effective, given that all clinics experience a similar, if not higher, no show rate.

The need to take time off work for a clinic appointment does not appear to present a significant barrier to appointment keeping, except for those who are required to take time off without pay. This problem could be solved if clinics extended their hours of operation, so as to accommodate work schedules.

Contrary to previous research, other practical matters such as distance from the clinic and available method of transport were unrelated to rates of failed appointments at the CHEO genetics clinic. Such effects were lacking, despite the fact that patients reported a wide range of travel times, including 28 patients (20%) who indicated that it took them more than an hour to get to the hospital. It may be that once the patient has made an assessment that the appointment is important, travel time may be irrelevant. We cannot draw any conclusions regarding any effects of transport method, because the vast majority (83%) of respondents drove their own vehicles to the clinic. This probably reflects the high mean socioeconomic status of the current sample; studies involving less privileged people
might show that lack of a convenient mode of transport is a significant obstacle in appointment keeping.

Our patient sample does not reflect the general population and is a limitation of the present study. Participants were highly educated and reported relatively high family incomes, which may account for the slightly lower rate of non-attendance at this clinic, as compared with the rates seen in previous studies which have focused mainly on low socioeconomic status populations. It is possible that factors other than those we have evaluated, or that we have found negative in our sample, may contribute to non-attendance rates in patients with a lower educational and socioeconomic status. Nevertheless, our results support some findings of previous studies which included low socioeconomic status populations.3-4,10 Moreover, the fact that our non-attendance rate was consistent with those reported by genetics clinics across Canada suggests that these rates reflect an accurate portrayal of the problem in the context of genetics health care in Canada.

Other limitations of this study include the limited generalisability of results to the United States health care system, as well as the telephone interview methodology. For non-attendees in particular, the latter approach may have restricted the degree of candour in participants’ survey responses; future studies may benefit from the use of a more anonymous data collection format. Finally, approximately half of the surveyed genetics clinics provided estimated as opposed to actual rates of non-attendance. Estimation may not accurately reflect no show rates; however, a comparison of means indicated that the actual and estimated numbers were similar.

Results of this study suggest a number of potential targets for improving attendance rates at genetics and other outpatient medical clinics. Better education of patients about their medical condition, the nature and purpose of specific options available to them, and the costs and benefits associated with such options, is clearly indicated. To be maximally effective, such education should come from a variety of sources, including the mass media, pamphlets distributed to pharmacies and medical clinics of all types, and, most importantly, open and detailed communication between patients and physicians. Some clinics could also attempt to extend or modify their hours of operation and on site child care initiatives could be explored. These larger scale approaches, in combination with more traditional methods such as telephone and mailed appointment reminders, may help to replace lengthy waiting lists and wasted physician time with more efficient and far reaching health care services.

Support for this project was provided by the Children’s Hospital of Eastern Ontario (CHEO) Research Institute. We thank the Canadian genetics centres for their contribution to data collection in the first phase of this study. We also thank Heather Tindell and Laura Van Houten for their role in collecting data at CHEO, as well as the participants for their time and cooperation.

L HUMPHREYS*
A G W HUNTER†
A ZIMAR†
Y KORNELUK*
M CAPPELLI*

*Mental Health Program, Children’s Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, Ontario, Canada K1H 8L1
†Genetics Program, Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada

Correspondence to: Dr Cappelli, cappelli@cheo.on.ca

1 Barron WM. Failed appointments: who misses them, why they are missed, and what can be done. Primary Care 1980;7:563-73.

CORRECTION

In the April 2000 issue of the journal, in the paper by Mortier et al on “Report of five novel and one recurrent COL2A1 mutations with analysis of genotype-phenotype correlation in patients with a lethal type II collagen disorder”, the mutation T1191N should have been T1190N throughout.

www.jmedgenet.com
Delineation of a new syndrome: clustering of pyloric stenosis, endometriosis, and breast cancer in two families
ALEXANDER LIEDE, TUYA PAL, MARGOT MITCHELL and STEVEN A NAROD

doi: 10.1136/jmg.37.10.794