Abstract
Retinitis pigmentosa (RP) is a group of clinically and genetically heterogeneous disorders characterised by night blindness, constriction of visual field, and dystrophic changes of the retina. Previous genetic studies have shown extensive allelic and non-allelic genetic heterogeneity of RP. Here we describe an Indian family with multiple consanguineous marriages and a total of four patients with autosomal recessive (AR) RP. The homozygosity mapping strategy was successfully used and indicated close linkage between the disease locus and D2S380, D2S441, D2S291, and D2S1394 with maximum lod scores between 1.51-3.07 at θ=0.00. The analysis of multiply informative meioses maps the locus (RP28) for ARRP in this family between D1S1337 and D2S286 on 2p11-p15. The involvement of visinin (VSNL1), a promising candidate gene assigned to chromosome 2p by previous studies, has been excluded by the absence of linkage.

Keywords: retinitis pigmentosa; RP28; chromosome 2p11-p15; homozygosity mapping

Retinitis pigmentosa (RP) is a heterogeneous group of inherited degenerative retinal disorders characterised by night blindness, constriction of visual field, and fundus changes including abnormal accumulation of pigment deposits in the retina. The age of onset of clinical symptoms varies from childhood/youth to middle age. RP is inherited most frequently as an autosomal recessive (AR) trait. Molecular genetic studies of the past several years have shown extensive allelic and non-allelic genetic heterogeneity within the ARRP group. To date, four different loci have been mapped on chromosomes 1q31-q32.1, 2q31-q33, 6p11-q15, and 16p12.3-p13.11. In addition, disease relevant mutations in a total of eight different genes expressed in the neuroretina or the retinal pigment epithelium have been identified in patients/families with ARRP (for a recent compilation see the RetNet home page in utroph.uth.tmce.edu). Yet, mutations of all these genes explain only a minority (<25%) of the cases as their frequency is usually very low (2-5% each) among the ARRP alleles. Homozygosity mapping is a powerful tool for mapping the loci of rare autosomal recessive traits in children from consanguineous marriages. The method is based on the principle that a rare disease in the affected offspring of a consanguineous mating is the result of inheritance of two identical copies of the disease gene and nearby loci from the common ancestor, the feature termed “homozygosity by descent”. Although a few other regions may also be homozygous (by descent) in any given child, these regions will vary from one child to another within the same sibship.

In the study presented here, the above strategy was used successfully both for a targeted and a genome wide search to map the ARRP locus in an Indian family. Family PMK146 contains multiple consanguineous marriages (fig 1). A total of four affected subjects were diagnosed in generations V and VI. Age of onset was in the first two decades and varied between five and 15 years. The three patients from generation V, aged 39 to 47 years, had severe visual handicap. The youngest patient, VI.2, had a visual acuity of 3/60 and counting fingers for the left and right eye, respectively, at the age of 15 years. The fundus picture of the probands showed the known features of RP, that is, narrowing of the arteries, bone corpuscle pigments, waxy pallor of the disc, and optic atrophy.

Genomic DNA of the family members analysed (fig 1) was extracted from whole blood spotted on filter papers. Scanning for homozygosity in the four affected subjects was performed using microsatellite repeat markers (with or without fluorescence labelling) of versions 6 and 6a of the MailPairs™ Screening Set (Research Genetics, Huntsville, AL, USA). At first targeted search for homozygosity in affected family members was initiated using intragenic or nearby DNA polymorphisms for the eight known ARRP genes and those at loci closely linked to the four ARRP loci mapped so far. In all cases, homozygosity was seen in one or more of the patients and linkage analysis gave highly negative lod scores for all values of the recombination fraction below 0.20 (data not shown). Subsequently, a random genome wide search for homozygosity was performed on the four affected subjects using polymorphic microsatellite markers. During this screening, all four affected subjects (V.1, 2, 3, and VI.2), but none of their healthy relatives, were found to be homozygous for the polymorphism at D2S1394 on the short arm of chromosome 2 (fig 1). In view of these results, further analysis was performed using addi-
from chromosome 2p11-p15 in family PMK146

Table 1 Linkage relationship between the locus for autosomal recessive RP and 14 loci from chromosome 2p11-p15 in family PMK146

<table>
<thead>
<tr>
<th>Locus</th>
<th>0.00</th>
<th>0.01</th>
<th>0.05</th>
<th>0.10</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
</tr>
</thead>
<tbody>
<tr>
<td>D2S1352</td>
<td>3.38</td>
<td>3.29</td>
<td>3.13</td>
<td>2.98</td>
<td>2.83</td>
<td>2.68</td>
<td>2.53</td>
</tr>
<tr>
<td>D2S1337</td>
<td>3.02</td>
<td>2.94</td>
<td>2.86</td>
<td>2.78</td>
<td>2.70</td>
<td>2.62</td>
<td>2.54</td>
</tr>
<tr>
<td>D2S380</td>
<td>2.56</td>
<td>2.49</td>
<td>2.41</td>
<td>2.33</td>
<td>2.25</td>
<td>2.17</td>
<td>2.09</td>
</tr>
<tr>
<td>D2S441</td>
<td>2.07</td>
<td>1.99</td>
<td>1.91</td>
<td>1.83</td>
<td>1.75</td>
<td>1.67</td>
<td>1.59</td>
</tr>
<tr>
<td>D2S1394</td>
<td>1.51</td>
<td>1.48</td>
<td>1.45</td>
<td>1.42</td>
<td>1.39</td>
<td>1.36</td>
<td>1.33</td>
</tr>
<tr>
<td>D2S286</td>
<td>1.07</td>
<td>1.01</td>
<td>0.95</td>
<td>0.89</td>
<td>0.83</td>
<td>0.78</td>
<td>0.73</td>
</tr>
<tr>
<td>D2S1331</td>
<td>0.51</td>
<td>0.47</td>
<td>0.43</td>
<td>0.39</td>
<td>0.35</td>
<td>0.31</td>
<td>0.27</td>
</tr>
<tr>
<td>D2S1258</td>
<td>0.12</td>
<td>0.11</td>
<td>0.10</td>
<td>0.09</td>
<td>0.08</td>
<td>0.07</td>
<td>0.06</td>
</tr>
<tr>
<td>VSNL1</td>
<td>0.05</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

*As no recombination was found in the region from (and including) D2S380 to D2S1394, haplotypes were constructed and used to calculate lod scores.

To date, it is not known what proportion of all ARRP cases is the result of mutations in the corresponding gene. Genotyping of 20 additional, similar sized Indian families for one or more of the polymorphisms given in table 1 has not shown any other kindred with similar linkage data (data not shown), suggesting that we are not dealing with a major locus for ARRP. However, a final answer to this question can only be given once the disease gene has been identified and a larger collection of unrelated patients has been screened for mutations. The
assumption that this gene is only one of the many genes implicated in the pathogenesis of ARRP is in line with the observation that mutations in the eight known ARRP genes identified and analysed so far also account for a small portion, up to 2-5% each, of all disease cases.34

The chromosomal region harbouring the ARRP gene is about 14 Mb. Therefore a direct search for the corresponding gene by positional cloning is not feasible. The gene encoding the α subunit of the cone photoreceptor cGMP gated cation channel and mutated in achromatopsia, an autosomal recessive form of colour blindness, has been mapped on 2q11, most likely between D2S338 and D2S373.34 As there is no overlap between the intervals for achromatopsia and RP28, it is unlikely that the two disorders are allelic. Similarly, the gene VSNL1, encoding a visinin-like protein, a cone photoreceptor specific 24 kDa calcium binding peptide, has also been excluded as a likely candidate gene for the disease as no linkage was found between the two loci.

This study was financially supported by grants from The Foundation Fighting Blindness (USA), FAUN-Stiftung (Nürnberg, Germany), the New Zealand Health and Research Council, and the German and Australian Retinitis Pigmentosa Associations.

Autosomal recessive retinitis pigmentosa locus

RP28 maps between D2S1337 and D2S286 on chromosome 2p11-p15 in an Indian family

Su-min Gu, Govindasamy Kumaramanickavel, C R Srikumari, Michael J Denton and Andreas Gal

doi: 10.1136/jmg.36.9.705

Updated information and services can be found at:
http://jmg.bmj.com/content/36/9/705

These include:

References
This article cites 6 articles, 1 of which you can access for free at:
http://jmg.bmj.com/content/36/9/705#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Eye Diseases (298)
Hereditary eye disease (92)
Genetic screening / counselling (886)
Clinical genetics (256)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/