In conclusion, the usefulness of current PCR based methods of detecting the junction fragment in mtDNA duplication is limited in our experience.

We are grateful to Dr C Van Broeckhoven for providing probe pWAV0493a.

O COMBARROS
A DONNOT
J BERCIANO
Service of Neurology, University Hospital “Marqués de Valdecilla”, 39008 Santander, Spain

A BENTO
J L FERNÁNDEZ-LUNA
Service of Immunology, University Hospital “Marqués de Valdecilla”, Santander, Spain

Pitfalls in the diagnosis of mtDNA mutations

At present, more than 50 mitochondrial (mt) point mutations, mostly involving mt transfer RNAs (tRNA), have been associated with human disease. Mutations in unrelated, complicated families with a novel mtDNA mutation, consisting of a single nucleotide deletion in tRNA threonine (tRNA^Thr). Both peripheral blood and fibroblasts are used as a source of DNA.

Family A. The first child, a girl, of non-consanguineous Turkish parents, is in good health. The second child, a boy, was born after an uneventful pregnancy, but within the first six hours of life he developed severe neurological distress associated with hyperammonaemia. He died on day four of life. Urinary tract infections were determined in a liver biopsy. The results were normal. The third child, a boy born after an uneventful pregnancy, was dysmorphic with abnormal ears, a small chin, and narrow mouth. He had cataracts and died at 3 days of life, and was found to have a truncus arteriosus type I. He was severely hypotonic. No deletion of 22q11 was present and metabolic screen was negative. He died at the age of 3 months of a respiratory infection. A myocar- dium, and liver biopsy was suggestive of mitochondrial disease with some mitochondrial alterations. A fourth child, a boy, was admitted to hospital at the age of 3 years for severe cranial trauma. He presented with cere- bral oedema, but had been previously com- pletely asymptomatic. There was no lactic acidosis. Echocardiography showed severe hypertrophic cardiomyopathy resulting in poor circular perfusion. The child died of heart failure. A muscle biopsy was normal on light and electron microscopy. A myocardiobiosis showed aberrant mitochondrial DNA inclusions. The parents refused necropsy on any of these children.

Family B. The proband is a 38 year old white male of Italian descent. At the age of 28 he complained of painful cramps and a burning sensation in the soles of his feet. He was fol- lowed by tingling and numbness in a glove and stocking distribution. Sensory symp- toms spread proximally to involve all four extremities and the trunk. At the age of 32, the patient developed urinary tract infections and impotence owing to absence of penile erection resulting in the necessity for self-catherisation. Muscle strength was normal, except for absent ankle jerks. Sensation was diminished for all modalities, distally more than proximally. Serum creatine kinase levels were 190 IU/l (normal <160). ECG, heart ultrasound, ophthalmological examination including electrocoagulogram, and serum lactate levels were normal. EMG and nerve conduction studies showed no abnormality. Axonal neuropathy (or neuropenathy). Hand and foot sympathetic skin response and the brain and spinal cord MRI studies were normal. Sural nerve biopsy showed marked reduction of myelinated and unmyelinated fibre density. In a triceps muscle biopsy, there were subsarcolemmal mitochondrial aggregates, strongly NADH-TR and SDH reactive. Many muscle fibres exhibited patchy loss of cytochrome c oxidase staining. Ultrastruc- turaly, aggregates of mitochondria with “parking lot” type I paracrystalline inclusions were abundant. In the patient’s mother, severe retinopathy, chronic renal failure, and a predominantly axonal sensory motor peripheral neuropathy were attributed to diabetes. Interestingly, this was an almost 10 year history of urinary retention owing to detrusor paralysis, which had led to bilateral hydrenephrosis, and which needed regular self-catherisation. A 43 year old brother of the proband had severe type 2 diabetes and had urinary retention owing to detrusor paralysis, which was treated by suprapubic catherisation. Neurological examination was normal, except for absent deep tendon reflexes. Electrocardiography showed absence of sensory nerve action potentials and sympathetic skin responses. Sural nerve biopsy confirmed the presence of a severe sensory axonal neuropathy or neuropenathy. A triceps muscle biopsy showed the presence of subsarcolemmal mitochondrial aggregates, partial cytochrome c oxidase deficiency, and type I paracrystalline inclusions in mitochondria. Both brothers suffer from unexplained orthostatic hypo- tension.

Routine molecular analysis in both families (family A, mother and 2 younger siblings, father, younger brother, and two asymptomatic siblings) had already ruled out the presence of deletions or duplications and common point mutations such as MERRF^Thr, MELAS^Thr, and NARP^Thr mutations. We then investigated the 22 mt tRNA genes and their flanking regions by PCR and direct sequencing by single strand conformation polymor- phism analysis (SSCP). An abnormal mobility pattern for the fragment containing the tRNA threonine and proline genes was seen for all investigated members of both families. Nucleotide sequencing of the relevant region revealed a homoplasmic deletion of a T nucleotide in a 5T stretch (including bp 15940 to bp 15944) in the tRNA threonine gene. Apart from the thymine deletion, no other significant differences were observed on the SSCP gel analysis of the tRNA gene. None of the index cases in both families. The thyme- adenosine nucleotide pair deletion was also absent in more than 70 controls.

This deletion mutation does not fulfill the classical criteria commonly used to define pathologicaal base pair changes in the mt genome. The mutation is homoplasmic and heteroplasmy is a very common feature of pathologistic mtDNA mutations. The T:A base pair deletion is present in the tRNA^Thr gene of both patients and asymptomatic relatives in both families. The tRNA gene was confirmed by PCR-SSCP analysis and by direct sequenc- ing. Despite these observations, the nature of the mutation, namely a base pair deletion in a tRNA gene, might suggest a link with disease.

The secondary structure of the wild type human mt tRNA molecules is not well known, but the 5T stretch is probably partially located in the 1T/2C stem of the tRNA^Thr clover leaf, while the fifth T forms part of the loop. Computer modelling and stability calculations of the mutant tRNA^Thr loop, according to the Zuker algorithm, predict a G(T/C) loop (or T is destabilised with 1.1 Joule/mol. Pathological molecular altera- tions in tRNA genes are most often single base pair substitutions, but mini rearrange- ments are not surprising in mtDNA associ- ated diseases. A single nucleotide insertion in the transfer RNA genes for serine^Thr and tryptophan^Thr has been described. However, to our knowledge, only one patient with a heteroplasmic single nucleotide deletion in a tRNA gene has been reported previously.

Pathological homogeneous mtDNA^Thr deletion mutation is unclear. Several possi- bilities can be considered. The homoplasmic deletion might represent a mutation with variable penetrance, so the deletion is not disease causing per se. This particular point of view suggests a role for the left handed DNA strand in modifying the expression of the mtDNA mutation. This has already been proposed for the mutations causing Leber’s hereditary optic neuropathy (LHON). More than 50% of the maternal relatives (often females) of symptomatic LHON patients do not suffer from blindness (or other neurological problems), even with homoplasmic mutation levels in their blood mtDNA.

Downloaded from http://jmg.bmj.com/ on July 6, 2017 - Published by group.bmj.com
Secondly, other, as yet unidentified, mutations in the mt genome of the patients could have a modulatory effect on the phenotypic expression of the thymine deletion. PCR-SSCP analysis of all other tRNA genes did not show additional mtDNA variations, but the complete sequence of the mt genome was not determined. Therefore, the presence of an additional heteroplasmic mtDNA mutation cannot be excluded.

Thirdly, the mt genome is known to be highly polymorphic. Therefore, the deletion could be classified as a very uncommon genetic polymorphism, and its presence in the two families suffering from mt disorders is no more than a striking coincidence.

We screened, along with the two families, more than 70 people (both patients and controls) for mutations in the same DNA fragment. Five different nucleotide substitutions, at positions 15904 C to T, 15907 A to G, 15924 A to G, 15928 G to A in tRNA\(^\text{Glu}\) (all previously reported), and 16017 T to C in tRNA\(^\text{Meth}\), were identified. All sequence variations were homoplasmic and observed both in patients and control mtDNA. The tRNA\(^\text{Glu}\) gene also harbours several nucleotide alterations responsible for mt encephalomyopathies: a G to A transition at nucleotide 15915, an A to G point mutation at nucleotide 15923, and a G to A mutation at bp 15927. This particular DNA fragment seems to represent a “hot spot” for DNA variations in the mt genome.

This report illustrates the difficulties in diagnosing mt disorders. More pedigrees with this deletion mutation will need to be characterised to understand the real significance of this DNA aberration. In addition, micro-rearrangements involving tRNA genes should be considered as possible causes for oxidative phosphorylation diseases, even if they are homoplasmic in both patients and unaffected relatives.

This work was supported by the National Fund for Scientific Research Flanders (FWO) grant 3.0065.87, the Fund for Scientific Research Flanders (FWO-Vlaanderen) grant G.0181.98, and the Research Council of the Vrije Universiteit Brussel (VUB) (Brussels, Belgium).

SARA SENCEA
WILLY LIEBENS
INGE LIEBAERS
Department of Medical Genetics, Academic Hospital Vrije Universiteit, B-1090 Brussels, Belgium

PETER VAN DEN BERGH
Laboratory of Neuropathology, Department of Neurology, University Hospital Saint-Luc Université Catholique de Louvain, Brussels, Belgium

MARIE CECILE NASSONNE
Department of Paediatric Neurology, University Hospital Saint-Luc Université Catholique de Louvain, Brussels, Belgium

AVRAM BENATAR
Department of Paediatric Cardiology, Academic Hospital Vrije Universiteit Brussel, Brussels, Belgium

LINDA DE MEIRLEIR
Department of Paediatric Neurology, Academic Hospital Vrije Universiteit Brussel, Brussels, Belgium

Severe primary pulmonary hypoplasia (“acinar dysplasia”) in sibs: a genetically determined mesodermal defect?

We report on two sisters who died neonatally from severe pulmonary hypoplasia without obvious cause. It was not associated with any other pathological condition, except mild growth retardation. Histological examination of the lungs showed reduced alveolar parenchyma, with almost complete absence of mature alveoli. The amount of interstitial connective tissue was increased and the bronchial cartilage plates appeared dysplastic. The form of severe pulmonary hypoplasia is very unusual; so far only two similar cases have been reported as pulmonary “acinar dysplasia”. We present the first familial occurrence of this condition and suggest autosomal recessive inheritance.

Case 1 was the first child of a young, healthy, and non-consanguineous couple. She was born at 40 weeks after an uneventful pregnancy. Clinically, there was no oligo- or polyhydramnios and the mother experienced normal fetal movements. No maternal medication or exposure to potentially teratogenic agents were recorded. Immediately after birth, the infant developed severe respiratory distress. Chest x-rays and CT scans showed marked pulmonary hypoplasia, complicated by bilateral pneumothoraces. No other radiological abnormalities could be documented and the skeletal structures were normal. Despite intensive treatment, she died on the second day.

Clinical examination showed no external abnormalities. Body length (49.5 cm) and foot length (8.0 cm) were normal, but body weight (2860 g) and head circumference (32.5 cm) were between the 10th and 25th centile. The karyotype was normal.

The only gross abnormality found at necropsy was pulmonary hypoplasia (fig 1) with a combined lung weight of 20.2 g (normal 56:15) and a lung weight/body weight ratio of 0.007 (normal >0.012). The lungs were normally lobed, but the lobular markings were accentuated owing to thickened interlobular septa. Histology of the lungs showed extreme hypoplasia beyond the bronchioral level with almost complete absence of mature alveoli and disproportionately numerous bronchi and bronchioli (fig 2). The bronchial branching pattern was normal. The peripheral lung parenchyma consisted merely of bronchioles and few immature canalicul structures, separated by an increased amount of interstitial connective tissue. The loosely textured and cellular interstitial tissue contained numerous, small, thin walled, and dilated blood vessels and foci of extramedullary haematopoiesis. The bronchial cartilage plates appeared unduly large and numerous and displayed a persistent immature cellular cartilage matrix with a prominent hyaline and phrmonic were normal. The brain and spinal cord were normal both grossly and microscopically. Skeletal muscle biopsies showed no abnormalities.

Case 2 was born at 40 weeks as the product of the mother's third pregnancy. A normal amount of amniotic fluid was documented clinically and confirmed by ultrasound. Her

Figure 1 Thoracic organs removed as a block. Severe pulmonary hypoplasia is illustrated by the fact that the inferior surfaces of the lungs are not in line with the apex of the heart.

Figure 2 The peripheral lung tissue contains virtually no alveoli, but consists merely of bronchioles. The bronchial cartilage plates are unusually prominent. Note the immature and cellular (“dysplastic”) aspect of the cartilaginous tissue (H&E).
Pitfalls in the diagnosis of mtDNA mutations.

S Seneca, W Lissens, I Liebaers, P van den Bergh, M C Nassogne, A Benatar and L de Meirleir

J Med Genet 1998 35: 963-964
doi: 10.1136/jmg.35.11.963

Updated information and services can be found at:
http://jmg.bmj.com/content/35/11/963.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/