Prenatal diagnosis of autosomal dominant polycystic kidney disease (PKD1) presenting in utero and prognosis for very early onset disease

K D MacDermot, A K Saggar-Malik, D L Economides, S Jeffery

Abstract
We describe four prenatal diagnoses in a family with autosomal dominant polycystic kidney disease. Two pregnancies were terminated following the detection of enlarged echogenic fetal kidneys with cysts. Histopathological examination confirmed the diagnosis of polycystic kidney disease. Linkage to PKD1 was obtained by the analysis of DNA from relatives in three generations and from paraffin blocks and formalin fixed fetal tissues. Prenatal DNA analysis in subsequent pregnancies identified one unaffected fetus and one fetus carrying the high risk PKD1 allele. Information on survival and subsequent outcome of PKD cases presenting in utero was requested by this family before prenatal testing was performed.

Of 83 reported cases of ADPKD presenting in utero (excluding termination of pregnancy) or in the first few months of life, 43% died before 1 year. Longitudinal follow up of 24 children in two studies showed that 67% of survivors developed hypertension, of whom three had end stage renal failure at a mean age of 3 years.

(Keywords: autosomal dominant polycystic kidney disease; fetal renal cysts; prenatal diagnosis)

Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder characterised by progressive renal cyst development, hypertension, and frequently by the development of end stage renal failure (ESRF). ADPKD is genetically heterogeneous; the PKD1 gene has been localised at 16p13.3,1 the PKD2 gene at 4q13-23,2 and the PKD3 locus remains unknown.3 PKD1 shows wide phenotypic variability which includes clinical presentation in utero. The mechanism for such early and severe expression of the disease is at present unknown, but it could include segregation of a modifying gene with inefficient DNA transcription/repair function contributed by the unaffected parent. This hypothesis is supported by the report of the same nonsense PKD1 mutation in a father and affected fetus,4 the two hit mechanism for renal cyst formation recently reported by Qian et al.,5 by the approximately 25% recurrence rate for similarly affected sibs,6 and by the low incidence of fetal presentation reported in second degree relatives in these families.7,8

We describe a PKD1 family, where the gene carrier father had two unilateral renal cysts at the age of 37, but two of his offspring developed renal cysts in utero. In these ADPKD families, following a diagnosis of fetal/early childhood presentation of renal cysts, prenatal testing or screening will be requested in subsequent pregnancies. Regular follow up of affected children will be necessary as the onset of complications of the disease occur early. Genetic counselling is difficult in families requesting prenatal testing following fetal presentation of ADPKD. Pick et al9 reported an apparently good renal prognosis in childhood in their subjects 8, 9, and 10, as did Zerres et al10 in their cases 2.1 and 2.2, but large numbers of cases have also died in utero or in the neonatal period.10,11

For prenatal test counselling, the perinatal mortality was obtained from 83 previously reported cases and the prognosis of survivors was estimated from longitudinal studies of 24 children followed up by Zerres et al9 and Pick et al10.

Molecular analysis
The method of Levi et al11 was used for DNA extraction from fetal tissue available as paraffin sections and the method of Goetz et al12 for DNA extraction from formalin fixed tissue. DNA from the appropriate family members was extracted from peripheral lymphocytes.13

All DNA markers used in this analysis were detected by PCR, with the exception of 3'HVR where Southern blotting was used. Red Hot Taq polymerase was used at 0.1 U per 15 µl reaction, with the manufacturer's buffer (Advanced Biotechnology) containing 1.5 mmol/l MgCl2.

Cycling conditions were as follows: for 16AC2.5 (D16S291) one minute at 94°C, one minute at 65°C, 30 seconds at 72°C for 30 cycles; for VK5 (D16S94) and K8 (intragenic PKD1), one minute at 94°C, one minute at 60°C, 30 seconds at 72°C for 30 cycles. Reaction products were separated on 10% PAGE and silver stained.

Case reports
The pedigree of the family is shown in fig 1. The great grandfather (I.1) developed hypertension at the age of 33 years, had recurrent urinary tract infections, and died of renal failure at 43 years of age. The diagnosis of ADPKD was made on post mortem examin-
In the ultrasound examination of pregnancy for ADPKD malformation, the heart of the fetus was affected, with echogenic, enlarged kidneys weighing 85 g (normal 7 g) and measuring 60 × 35 × 35 mm. The kidneys had areas with multiple cysts ranging in size from 1 to 10 mm. Microscopy showed cystic dilatation of some glomeruli and tubules admixed with others of normal appearance. No liver cysts were present and liver histology was normal.

CASE 2
In a subsequent pregnancy (IV.3), the fetal abdominal circumference and amniotic fluid volume were normal at 11 weeks, but at 16 weeks both fetal kidneys were enlarged and echogenic, each containing several small cysts. The fetal bladder was visualised and amniotic fluid volume and fetal growth were consistent with gestation. The family elected to terminate the pregnancy at 17 weeks. Histopathological examination showed cysts throughout the kidneys measuring up to 2 mm in diameter with no normal tissue present. On microscopy, more than 300 cystic dilatations of renal tubules and the Bowman's spaces of the glomeruli were counted on one slide.

Prenatal diagnosis was requested in the next pregnancy (IV.4) following the identification of the haplotype linked to PKD1 in this family (see results). The fetus was predicted to be unaffected, routine fetal scans were normal, and, after birth, renal ultrasound at 4 months showed normal kidneys. At 16 months, the child remains asymptomatic.

CASE 3
In the following pregnancy (IV.5), fetal scans were normal at 8 weeks and 11 weeks, when a chorionic villus sample was obtained for molecular analysis. The fetus was found to carry the high risk allele at 12 weeks (see results) and termination of pregnancy was requested and performed by suction, so that it was not possible to identify renal tissue for examination.

Normal karyotypes, in particular showing no evidence of rearrangement or microdeletion in chromosome 16p, were confirmed in all individual samples analysed, except that of I.2, which was not done.

Results
LINKAGE TO PKD1 LOCUS
In this family, genetic linkage could only be established by the analysis of fetal tissue. On this basis, prenatal diagnosis was offered and the fetal DNA was analysed using KG8, VK5, and 16AC 2.5 markers, in addition to three informative markers on chromosomes 5, 7, and X, to exclude maternal tissue contamination of chorionic villus samples. The material from wax embedded tissue sections was heavily degraded, producing DNA fragments below 500 bp on agarose gels, but KG8 and VK5

Figure 1 Pedigree showing genetic linkage to PKD1. IV2 is case 1, IV3 case 2, and IV5 is case 3.
primers produced a good signal. The probe VK5 shows a recombination value of 0.01 with the PKD1 locus and no recombination has been reported with 16AC2.5. KG8 is in the untranslated region (UTR) of the PKD1 gene. The pedigree and haplotypes are shown in fig 1. The 3’HVR haplotype could not be obtained for IV.2 as the DNA was too degraded and was not used for prenatal diagnoses in IV.4 and IV.5 because of its relatively high recombination rate. A lod score of 0.9 was obtained for linkage between ADPKD and the intragenic probe KG8 in this family, using a recombination fraction of 0.001 in the calculation. Published values for the ADPKD heterogeneity in white populations range from 0.85 to 0.96. When these values were applied in a Bayesian calculation, the probability of linkage to the PKD1 locus in this family was high, between 0.978 and 0.995.

PERINATAL MORTALITY (FROM PREVIOUS REPORTS)
From 83 reported cases of ADPKD presenting in utero or in the first few months of life, excluding termination of pregnancy (TOP), three were stillborn, 27 died <1 month of pulmonary or renal insufficiency or both, and six died <1 year of renal failure. Perinatal mortality in this group is therefore high, as a total of 43% of cases (36/83) died before 1 year.

PROGNOSIS IN SURVIVING CHILDREN (FROM PREVIOUS REPORTS)
On reviewing the prognosis of ADPKD presenting in utero or in the first few months of life, individual reports which had variable length and mode of follow up were not included. The most informative studies were those of Fick et al, presenting data on follow up of 10 children (subjects 1-10) from eight families for a mean of 6.8 years, and Zerres et al on 14 children (cases 1.1, 1.2, 2.1, 2.2, 4.1, 4.2, 7.1, 9.3, 10.1, 10.2, 11.2, 13.2, 14.2, 15.3) from 11 families followed for a mean of five years. From 24 children diagnosed prenatally or up to 1 year of life, eight remained well (mean age of these children was 3.2 years, range 3 months to 7 years). Sixteen of 24 developed hypertension requiring treatment (at a mean age of 2.9 years, ranging from birth to 12 years; six of 16 were below the age of 6 years). ESRF developed in three hypertensive children (at a mean age of 2.8 years, range 1 to 4 years). Complications of PKD were therefore present in 67% of survivors at a mean age of 3 years.

Discussion
In this report we have shown that archival material from affected fetuses can be used for linkage analysis despite extensive DNA degradation. Since no common mutations have yet been found for PKD1, and duplication of the 5’ part of the gene occurs more proximally on 16p, mutation detection is at present difficult and determination of the disease locus in a family relies on genetic linkage analysis.

Linkage to the PKD2 region was not evaluated in this family. In non-PKD1 families, the onset of renal failure is later than in PKD1 and all families with ADPKD diagnosed in utero analysed to date have shown linkage to PKD1. The probability of linkage between the intragenic PKD1 marker KG8 and the disease in this family was 0.978 to 0.995, which was statistically unlikely to be the result of chance. For these reasons, prenatal diagnosis by DNA was considered reliable and was offered.

Severe infantile PKD has been attributed to large deletions involving both the PKD1 gene and the adjacent tuberous sclerosis gene, TSC2. Since these genes show tail orientation and KG8 shows heterozygosity in the affected subjects reported here, a contiguous gene deletion is highly unlikely in this family.

In ADPKD, the incidence of development of renal cysts in utero has been estimated as 2%. The recurrence risk is high, with 45% of gene carrier sibs (or 25% of all sibs) showing comparable early manifestation. Before prenatal DNA diagnosis in this family, the parents had to make a decision whether to terminate an affected pregnancy without knowledge of the severity of the disease in the fetus. As two affected cases with in utero presentation have already occurred and the recurrence risk was 45%, the parents have made the difficult decision to terminate the subsequent affected fetus.

The possible mechanisms of severe and much earlier clinical presentation of ADPKD in the fetus than in the parent are of great interest. These include anticipation, imprinting, and the segregation of modifying genes. Suggestive, but not conclusive data are available for anticipation and imprinting in ADPKD. Evidence for the former was presented by Fick et al, who found that of 86 informative ADPKD families, 53% showed 10 years earlier onset of ESRF in offspring, when compared to their affected parent. The clinical presentation of ADPKD in the family presented here would be difficult to reconcile with anticipation. The affected relative in generation I showed more severe clinical symptoms than his offspring in generation II, while the affected father of the cases presenting in utero was asymptomatic. The possibility of imprinting is supported by the findings of statistically significant (p<0.05) maternal transmission found in fetal/early childhood ADPKD onset cases (M:F 23:41) and significantly earlier onset of ESRF in subjects with ADPKD1 inheriting the disease from their mother rather than from their father (50.5 ± 64.8 years, p = 0.004). However, in the family reported here, the transmission was paternal. No anticipation has been observed in many families with in utero onset of the disease, which is illustrated by the family reported here and by others. It is of interest to examine the high recurrence risk for in utero presentation of PKD1, with the recent data from Qian et al. The authors showed that renal cysts in ADPKD are monoclonal, they have shown loss of heterozygosity for two intragenic PKD1 markers within individual cysts, and confirmed the loss of the...
normal allele. Their report provides convincing data for a two hit mechanism in the formation of renal cysts, the same mechanism which results in loss of function in tumour suppressor genes. If this is the case, the segregation of a rare gene with inefficient DNA transcription/repair from the unaffected parent could produce a high frequency of somatic second hits and multiple renal cysts in utero. The transmission of a modifying gene from the unaffected parent was discounted in the past by the reports of early onset ADPKD in a cousin \(^{26}\) and an uncle.\(^ {27}\) As there are no other published reports (more than 160 families) of second degree relatives with early onset PKD, the segregation of a modifying allele in these three families could have happened by chance. However, a very unusual transmission of early onset PKD has been reported in two additional families. In one family, the affected mother had four offspring with in utero onset PKD by two different husbands\(^ {28}\) and, in the second family, the mother developed PKD at the age of 3 years and her offspring presented with renal cysts at 7 months.\(^ {9}\) Theoretically, two different partners could have been carriers of a rare modifying allele by chance, but the early onset of PKD in mother and daughter does not fit this hypothesis. Both these mothers were sporadic cases and mutation analysis in these two families would be of interest.

The same stable nonsense PKD1 mutation was found in a child with fetal presentation of renal cysts as in her affected father with adult onset PKD,\(^ {9}\) which excluded a genomic rearrangement at least in that family.

The 25% recurrence of similarly early onset PKD in sibs observed by Zerres et al\(^ {26}\) would also fit with the modifying gene being inherited from the unaffected parent and this is supported by the very low incidence of in utero presentation of PKD in second degree relatives in these families.

The development of oligohydramnios in fetuses with renal cysts is regarded as an unfavourable prognostic sign. TOP is commonly performed, so that the outcome of these cases is largely unknown. Stillbirths with Potter sequence were reported in ADPKD families.\(^ {10}\) However, in one family, recurrent oligohydramnios was documented and both sibs have survived.\(^ {26}\) One has developed ESRF at 3 months of age and the other sib had reduced renal function and short stature at 4 years, but remained normotensive.

When considering the available data regarding the prognosis of in utero presentation of PKD, it is apparent that the most useful indicator is the outcome of a previously affected sibling, which shows a high degree of correlation. When the diagnosis is made in the first affected case in the family, the estimated perinatal mortality of 43% can be given with 67% of complication rate in survivors by the age of 3 years. In these cases, modifying factors determining the early development of renal cysts are likely to be present. Molecular genetic study and clinical follow-up of these rare families can be accomplished by collaboration between several centres.

We are grateful to the Histopathology Department for the fetal post mortem reports. AKSM is the Williams Fellow of the University of London.
Prenatal diagnosis of autosomal dominant polycystic kidney disease (PKD1) presenting in utero and prognosis for very early onset disease.
K D MacDermot, A K Saggar-Malik, D L Economides and S Jeffery

doi: 10.1136/jmg.35.1.13

Updated information and services can be found at:
http://jmg.bmj.com/content/35/1/13

Email alerting service
These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/