LETTERS TO THE EDITOR

Juvenile onset Huntington's disease in an Omani child with asymptomatic, at risk parents

A 6 year old Omani Arab girl presented with one year's history of progressive intellectual deterioration, grimacing, dysarthria, dystonic posturing of the hands, and ataxia with falls, and was now severely retarded and mute. She came from a family affected by Huntington's disease (HD) (fig 1). Her parents, III.19 and III.20, who were cousins aged 36 and 27 years respectively, reported that their mothers, II.2 and II.5, had died from HD. Both parents appeared to be healthy and were asymptomatic, but they suspected that their child had inherited the "family disease". Early onset HD was confirmed by CT brain scan, which showed marked atrophy of the caudate nuclei, and DNA studies using PCR techniques, performed in Glasgow, which showed one abnormal band equivalent to 92 CAG repeats in the HD gene (IT14 4-16.3), and a second band equivalent to 18 repeats (indicating one affected parent). Neither parent consented to predictive testing; however, it is suspected that she inherited the mutation (without the massive expansion) from her father. In juvenile cases, the father is the affected parent three to four times more frequently than is the mother and there is a female preponderance.1

Subject III.10, aged 55 years, symptomatic for five years, was also assessed and the diagnosis of HD was supported by CT brain scan which showed marked caudate nuclei atrophy. Subjects III.1 and III.2, reported to be symptomatic, have not yet been assessed.

Since studying the first family, HD has been diagnosed in an unrelated Omani family. The proband was a 23 year old married woman with three children, who presented with 4 years' progressive choreoathetosis and recent onset of early dementia. Her father, who died at 62 years, is presumed to have had HD. The patient's CT brain scan showed marked caudate atrophy, with a 22 mm bicaudate diameter (normal range 12.5-15 mm), and DNA study showed 54 CAG repeats in the HD gene. She has five sibs aged 14 to 28 years, who have not yet been assessed.

HD is known to occur in Arabs in Saudi Arabia,2 4 Syria,3 Egypt,5 and Lebanon,6 but this is the first report from Oman. Our families appear to be of unmixed Arab ancestry and the gene may have been imported by one of them.7 However, Oman has had a long history of international trading and contact (for example, the Portuguese ruled Muscat and coastal Oman during the 17th and first half of the 18th centuries), and the gene could have been introduced by foreigners at an earlier time. A HD support service has now been established in Muscat, to provide counselling and to arrange predictive tests according to international guidelines.3

EUAN M SCRIMGEOUR
ROSHAN L KOUL
PRATAP R CHAND
JOHN K THARAKAN
Departments of Medicine and Paediatrics, Sultan Qaboos University, PO Box 35, Al-Khoud, Muscat, Sultanate of Oman

CATHERINE A FREW
Molecular Genetics Laboratory, Duncan Guthrie Institute of Medical Genetics, Nin Nikki, Glasgow, UK

Mirror hands and feet

I would like to comment on the article by Hatchwell and Dennis in the April 1996 issue of Journal of Medical Genetics.1 They described a child with mirror hands and feet or Laurin-Sandrow syndrome. In their discussion of the possible cause of the abnormalities they mention the HOXB-8 gene as a possible candidate gene for this disorder.

I do not agree for a number of reasons. First, mirror image duplications of stylopod (carpals/tarsals and digits) and autopod (forearm/leg) bones have indeed been observed after ectopic expression of HOXB-8 in mice.2 However, ectopic expression of HOXB-8 as a consequence of a mutation is not likely. Expression of HOXB-8, like other HOX genes of the Antennapedia class, is likely to be controlled by other genes, the mechanism of action involves mesodermal patterning. The normal expression pattern of HOXB-8 would certainly suggest this,3 as would the conservation of gene function between Drosophila and vertebrates.4 Second, ectopic expression of HOXB-8 from pre-limb bud stages (at which it first appears in the posterior part of the limb bud) would be expected to result in duplication of the zygomatic (bunumerus) as well as other function mutations, which were also suggested by the authors as a possible cause, do not result in an ectopic zone of polarising activity in mice.5 Overexpression of HOXB-8 results in transformations of the axial skeleton instead.6

I would like to suggest another hypothesis. A number of mouse mutants have a skeletal phenotype similar to Laurin-Sandrow syndrome. One of these, Strong's luxoid (mu) mice, have preaxial polydactyly of all limbs as well as reductions of the radius and ulna.7 The mutant gene is semidominant. Although Hatchwell and Dennis do not define the polydactyly in their patient, the x ray photograph of the right foot that they show suggests a partial preaxial pattern. The extreme varus position of the feet suggests a reduction of the tibia and the unipolarization of the hands radial reduction. These abnormalities are similar to those observed in homo- and heterozygous it mice (heterozygous mice have abnormalities of the hind limbs only).8 Chan et al9 have recently found evidence for ectopic polarising activity in it limbs. The skeletal abnormalities are consistent with this finding. HOXB-8 expression in these mice has been found to be normal. These findings of Chan et al9 would remove HOXB-8 from consideration as a candidate gene for Laurin-Sandrow syndrome, provided that the Strong's luxoid mutation is indeed a homologue. They suggest that the it gene product acts either downstream of HOXB-8 or independently of it in specifying the location of the ZPA.

I would like to offer an alternative hypothesis. The "Laurin-Sandrow gene", which could be the it gene, could act upstream of HOXB-8 and determine the extent of its expression. Overexpression of HOXB-8 leads to posterior transformations in the upper thoracic vertebrate in mice. An attractive hypothesis would therefore be that HOXB-8 expression determines "posteriorness" in the limb bud, specifying posterior cells as ZPA. Posterior identity as a "default state" in the limb is consistent with modern ideas on branching morphogenesis in the limb.9 Absence of the Laurin-Sandrow gene product

Figure 1 Pedigree of patient's family. III.1 and III.2 are suspected to have HD, but have not been assessed.

A study of brothers with Klinefelter syndrome

Klinefelter et al. described males with infertility, hypogonadism, and gynaecomastia in 1942. The other clinical features of Klinefelter syndrome are now well delineated but not present in all affected subjects. The live birth prevalence of Klinefelter syndrome is approximately 1 in 1000. The diagnosis is made and confirmed by the cytogenetic finding of 47.XXY. Klinefelter syndrome is considered to be a sporadic disorder resulting from non-disjunction. This is maternal in one half of cases and paternal in the remainder. The empirical recurrence risk is negligible as the condition occurs sporadically, with the recurrence risk equal to the birth prevalence, that is 1 in 1000. The older donor is considered as having Klinefelter syndrome at the age of 5 years. He had reduced left elbow supination and radiography showed radioulnar synostosis. Diagnosis was made in the younger sib at the age of 3 years because of undescended testes and a "willowy appearance" similar to his older affected brother. Both had heights approximately on the 50th centile, weights on the 3rd centile, and reduced lower body segment ratios of 0.87 and 0.85. The older sib is at Tanner stage 1 of sexual development at 11 years. Both are otherwise normal on examination, of normal intellectural ability, and neither has any behavioural problems.

Both parents were healthy, normal on examination, and aged 24 years at the time of birth of their first child with Klinefelter syndrome. The couple had examined the umbri and femora of Lurian-Sandrow patients for any evidence of abnormal patterning. Further delineation of the Lurian-Sandrow phenotype, especially with regard to more proximal skeletal elements, would be most helpful in the search for candidate genes for this intriguing syndrome.

BOOK REVIEWS

If you wish to order or require further information regarding the titles reviewed here, please write to or telephone the BMJ Bookshop, PO Box 295, London WC1H 9JF. Tel 0171 383 6244, Fax 0171 383 6662. Books are supplied post free in the UK and for BFPO addresses. Overseas customers should add 15% for postage and packing. Payment can be made by credit card (Mastercard, Visa, or American Express) stating card number, expiry date, and full name. (Telephone numbers are occasionally subject to revision by the Publishers.)

Mirror hands and feet.

M A van Steensel

J Med Genet 1997 34: 701-702
doi: 10.1136/jmg.34.8.701-a

Updated information and services can be found at:
http://jmg.bmj.com/content/34/8/701.2.citation

Email alerting service
Demand free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/