Hydrocephalus and Hirschsprung’s disease in a patient with a mutation of L1CAM

Nobuhiko Okamoto, Yoshinao Wada, Megumi Goto

Abstract
Abnormalities of the L1CAM gene, a member of the immunoglobulin gene superfamily of neural cell adhesion molecules, are associated with X linked hydrocephalus and some allelic disorders. We describe a patient with X linked hydrocephalus and Hirschsprung’s disease (HSCR) with a novel mutation in the L1CAM gene. This is the first report of HSCR with a mutant neural cell adhesion molecule. Although the disease phenotypes of this patient may well be independent, the alternative explanation that L1CAM mutations may contribute to both phenotypes cannot be excluded in view of an earlier report on another patient with both X linked hydrocephalus and HSCR. (J Med Genet 1997;34:670–671)

Keywords: X linked hydrocephalus; L1CAM; HSAS syndrome; Hirschsprung’s disease

X linked hydrocephalus (XLH), HSAS (hydrocephalus owing to congenital stenosis of the aqueduct of Sylvius, McKusick 307000) syndrome, is characterised by severe mental retardation, spastic tetraplegia, and bilateral adducted thumbs. Abnormalities in the L1CAM gene, a member of the immunoglobulin gene superfamily of neural cell adhesion molecules, underlie this syndrome. Reports on new mutations in the L1CAM gene are accumulating. HSCR is a neurocraniopathy characterised by the absence of parasympathetic ganglion cells of the terminal hindgut. To date, mutations in the RET proto-oncogene, EDNRB (endothelin receptor B), and EDN3 (endothelin 3) have been reported in HSCR cases. We present a patient with XLH resulting from a 2 bp deletion in exon 18 of the L1CAM gene, who had cleft palate and Hirschsprung’s disease (HSCR).

Case report
The patient was the first child of nonconsanguineous, healthy Japanese parents. The family history was negative for neurological abnormalities and HSCR. Fetal ultrasonography showed congenital hydrocephalus at 25 weeks of gestation. After birth, cleft palate, micrognathia, abdominal distension, bilateral adducted thumbs, and flexion contractures of the fingers were noted. CT scan showed marked dilatation of the lateral ventricles. The diagnosis HSCR of rectosigmoid type was made. Corrective surgery for HSCR and ventriculoperitoneal shunting were successfully performed. Histopathological studies of the resected segment of the colon showed aganglionosis consistent with HSCR. At the age of 3 years, he had severe mental retardation, spastic quadriplegia, and could not control his head. Ocular pursuit and response to sound were not evident. Neuroradiological studies showed enlarged lateral ventricles, agenesis of the corpus callosum and septum pellucidum, irregular ventricular wall, hypoplastic white matter, cerebellar hypoplasia, and fusion of the thalamus. His typical neuroradiological findings prompted us to study the L1CAM gene.

Materials and methods
Blood samples were obtained from the patient with informed consent of his parents. DNA was extracted by the phenol/chloroform method. The primer sequences flanking the 28 exons of the L1CAM gene and PCR conditions have been reported by Jouet et al. In our study, PCR was performed in 100 μl liquid comprising 85 μl water, 10 μl 10 × PCR buffer, 1 μl 20 mmol/l dNTP mix, 50 pmol of sense and antisense primers (preceded by -211M13 universal and T7 primers, respectively), 1 μl of genomic DNA, and 5 U of Taq polymerase. The PCR conditions for amplifying exons 18 were 95°C for two minutes followed by 30 cycles of 95°C for one minute, 55°C for one minute, 72°C for one minute, and 72°C for four minutes. Direct sequencing of PCR products was performed on both strands using the fluorescent dyeoxy terminator method.

Results
Sequence analysis of exon 18 of the L1CAM gene showed a 2 bp deletion (fig 1). The mother was heterozygous for the mutation. This deletion results in a frameshift and a premature stop codon. Translation of this mRNA will create a truncated protein without a transmembrane domain.
Hydrocephalus and HSCR

Discussion

We found a novel mutation in the LI-CAM gene in a patient with XLH associated with cleft palate and HSCR. Mutations in the LI-CAM gene have been found in XLH,1 MASA syndrome (mental retardation, aphasia, shuffling gait, and adducted thumbs), and X linked spastic paraplegia.2 The three disorders are allelic with overlapping profiles of clinical manifestations and intrafamilial heterogeneity.2,6 Fransen et al suggested that otopalatodigital syndrome, a bone disorder with cleft palate linked to Xq28, is an interesting disease in which to study the LI-CAM gene because LI-CAM is linked to Xq28 and activates fibroblast growth factor receptors. Although our patient had cleft palate, other manifestations were distinct from those of otopalatodigital syndrome.

This is the first report on the association of a defective LI-CAM gene and HSCR. Although XLH and HSCR in our patient may well be independent, the alternative explanation that LI-CAM mutations may contribute to both phenotypes cannot be excluded in view of an earlier report by Kaplan.13 She reported a 2 year old boy with psychomotor retardation, congenital unilateral ptosis, bilateral adducted thumbs, weakness of the upper limbs, and HSCR, with enlarged ventricles, complete agenesis of the corpus callosum, and hypoplasia of the inferior vermis and cerebellum. The maternal uncle of the proband also had marked psychomotor retardation and agenesis of the corpus callosum but no adducted thumbs or HSCR. A maternal third cousin had HSCR. The pedigree may have an LI-CAM abnormality with intrafamilial heterogeneity.

The genotype-phenotype relationship in LI-CAM abnormalities has not been fully established. None of the cases with mutations involving truncation of LI-CAM before the transmembrane domain has been reported to have HSCR. However, in many cases the patients die in the newborn period and the appropriate postmortem examination for aganglionosis may not be complete. Clearly, if mutations in LI-CAM are involved in the development of HSCR, they may require interaction with other genetic or environmental factors for HSCR to be apparent. This would not be surprising in view of the fact that LI-CAM is one component of a complex network of cell adhesion molecules, cytoskeletal elements, and signalling molecules that are involved in neuronal development. HSCR is attributed to a defect in migration of neural crest cells.

Since LI-CAM is on the X chromosome, it might be speculated that it could contribute to the unexplained unequal distribution of HSCR in males and females (approximately 3:1 in Japan). Further clinical and molecular studies of similar patients are required to clarify the role of LI-CAM in the development of intestinal ganglion cells.

Hydrocephalus and Hirschsprung's disease in a patient with a mutation of L1CAM.

N Okamoto, Y Wada and M Goto

J Med Genet 1997 34: 670-671
doi: 10.1136/jmg.34.8.670

Updated information and services can be found at:
http://jmg.bmj.com/content/34/8/670

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/