Syndrome of the month

Waardenburg syndrome

Andrew P Read, Valerie E Newton

Abstract
Auditory-pigmentary syndromes are caused by physical absence of melanocytes from the skin, hair, eyes, or the stria vascularis of the cochlea. Dominantly inherited examples with patchy depigmentation are usually labelled Waardenburg syndrome (WS). Type I WS, characterised by dystopia canthorum, is caused by loss of function mutations in the PAX3 gene. Type III WS (Klein-Waardenburg syndrome, with abnormalities of the arms) is an extreme presentation of type I; some but not all patients are homozygotes. Type IV WS (Shah-Waardenburg syndrome with Hirshsprung disease) can be caused by mutations in the genes for endothelin-3 or one of its receptors, EDNRB. Type II WS is a heterogeneous group, about 15% of whom are heterozygous for mutations in the MITF (microphthalmia associated transcription factor) gene. All these forms show marked variability even within families, and at present it is not possible to predict the severity, even when a mutation is detected. Characterising the genes is helping to unravel important developmental pathways in the neural crest and its derivatives.

Keywords: Waardenburg syndrome; auditory-pigmentary syndromes

History
On 14 December 1947 the Dutch ophthalmologist and geneticist Petrus J Waardenburg presented a deaf-mute man with “dystopia punctorum lacrimarum, blepharophimosis and partial iris atrophy” to a meeting of the Dutch Ophthalmological Society.1 The patient had blue eyes but was bald, and Waardenburg did not at the time make the connection between hearing loss, white forelock, unusual eye colour, and dystopia canthorum. He mentioned a report of twins with the same eye abnormality who were “coincidentally” also deaf-mute. The following year, while he was visiting Geneva, David Klein showed him a 10 year old girl with a remarkably severe auditory-pigmentary syndrome who also had dystopia canthorum. Realising that coincidences were multiplying, Waardenburg was prompted to undertake a systematic search among 1050 inmates of five Dutch institutions for the deaf.

Waardenburg's results, published in a huge paper1 in the American Journal of Human Genetics in 1951, defined the syndrome now named type I Waardenburg syndrome (WSI). He characterised the syndrome as autosomal dominant with very high penetrance (159/161) of dystopia but reduced penetrance of all other features. He appears to have taken little interest in the patients who did not have dystopia canthorum (he noted seven people with heterochromia or isochromic hypoplastic irides, but without dystopia, whom he did not investigate further). It was not until 1971 that Arias2 drew attention to the existence of a separate division of the syndrome, which he named type II Waardenburg syndrome (WS2). WS2 has identical auditory and pigmentary features to WSI but lacks dystopia canthorum. Two of Waardenburg's original families had this variant, but both were so small that Waardenburg had overlooked the familial “non-penetrance” of dystopia.

Klein's patient was very different from those in Waardenburg's families. As well as showing the usual features of Waardenburg syndrome type I to an exceptional degree, she also suffered from a severe musculoskeletal syndrome resembling amyoplasia. At first, Waardenburg speculated that perhaps she was homozygous for the gene mutated in his syndrome. Later he evidently came to feel that Klein's patient represented some different clinical entity, a view that Klein did not appreciate.3 Over the years a small number of other patients have been described who show similar features to Klein's patient, but in milder form. WS with musculoskeletal abnormalities has been called type III WS, Klein-Waardenburg syndrome, or WS3. Already in 1983 Klein1 suggested that this was a variant presentation of WSI.

In 1981, Shah et al4 described 12 babies with Hirschsprung's disease, white forelocks, and white eyelashes, born to five families in Bombay. What, if any, relation these babies had to Waardenburg syndrome is not clear. Dystopia was absent, hearing was not tested because all babies died in the neonatal period, and the

Department of Medical Genetics, St Mary's Hospital, Hathersage Road, Manchester M13 0JH, UK
A P Read

Centre for Audiology, University of Manchester, Manchester M13 9PL, UK
V E Newton

Correspondence to: Professor Read.
pigmentary disorder of the irides was reported as "isochromia irides, light brown irides with mosaic pattern...a common inherited condition in our population". However, the presumed recessive combination of pigmentary disturbance and Hirschsprung's disease has been called Shah-Waardenburg syndrome, type IV Waardenburg syndrome, or WS4. Recent demonstration of mutations in endothelin-3 and its receptor (see below) have allowed a new and more concrete definition of WS4.

Clinical features of Waardenburg syndrome types I and II

Table 1 summarises the four clinical types of Waardenburg syndrome and formal diagnostic criteria are shown in table 2. Whereas WS1 defines a specific genetic entity, the clinical definition of WS2 is arbitrary, covering any auditory-pigmentary syndrome that does not clearly belong somewhere else. The label WS2 undoubtedly covers a heterogeneous collection of melanocyte defects. Apart from dystopia canthorum, all features of WS1 and WS2 show marked interfacial and intrafacial variability. Table 3 shows the penetrance of the various features in a series of WS patients reported by Liu et al. from our own observations, and from published reports. The same pigmentation defects appear in WS1 and WS2, but with different frequency. The higher reported incidence of hearing loss in WS2 compared to WS1 is probably mainly a consequence of diagnostic requirements: without dystopia canthorum as a guide, patients need to show more auditory-pigmentary features to be classified as affected. Fig 1 shows typical facial appearances of WS1 and WS2.

INCIDENCE AND PREVALENCE

Waardenburg estimated the prevalence of his syndrome to be 1/42 000 of the population and 1.43% of the congenitally deaf. Fraser found a prevalence of 2.12-3.01/100 000 in his school study of 2355 deaf children, and estimated a prevalence of 1.44-2.05/100 000 in the general population. WS1 and WS2, as defined by the diagnostic criteria in table 2, are about equally common. In addition there are many families ascertained through a proband with hearing loss, in which one or more relatives have single features of WS2, without anybody satisfying the full diagnostic criteria. Without molecular data it is impossible to say whether or not these families should be added to the figures for WS2. The mutation rate has been estimated as 0.4/100 000 gametes or 0.39/100 000 gametes.

DYSTOPIA CANTHORUM

Dystopia canthorum is the most penetrant feature of WS1, being present in 99% of those affected. Dystopia presents with the appearance of blepharophimosis and with fusion of the inner eyelids medially leading to a reduction in the medial sclera (fig 1). The inferior tachomalous ducts are displaced laterally, with the punctae opposite the cornea. Not only the inner canthal, but also the interpupillary and outer canthal distances are greater than normal, indicating a degree of hypertelorism.

In the majority of affected subjects dystopia is readily recognised, but our experience shows that clinical impression is not altogether reliable. Subjects with WS2 risk being misdiagnosed as WS1 if there is mild hypertelorism. It is much better to rely on a biometric index. The W index (fig 2) is the best of several broadly equivalent indices (the bizarre numbers in the formula come from a discriminant analysis). Such indices are based upon the inner canthal, interpupillary, and outer canthal...
Table 3 Penetrance (%) of clinical features of type I and type II Waardenburg syndrome. Data from Liu et al (where references to published cases are given)

<table>
<thead>
<tr>
<th>Type</th>
<th>Source</th>
<th>No</th>
<th>SNHL</th>
<th>Het</th>
<th>HypE</th>
<th>WF</th>
<th>EG</th>
<th>Skin</th>
<th>HNR</th>
<th>Eyb</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS1</td>
<td>Liu et al</td>
<td>60</td>
<td>58</td>
<td>15</td>
<td>15</td>
<td>48</td>
<td>38</td>
<td>36</td>
<td>100</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Other reports</td>
<td>210</td>
<td>57</td>
<td>31</td>
<td>18</td>
<td>43</td>
<td>23</td>
<td>30</td>
<td>52</td>
<td>70</td>
</tr>
<tr>
<td>WS2</td>
<td>Liu et al</td>
<td>81</td>
<td>78</td>
<td>42</td>
<td>3</td>
<td>23</td>
<td>30</td>
<td>5</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Other reports</td>
<td>43</td>
<td>77</td>
<td>54</td>
<td>23</td>
<td>16</td>
<td>14</td>
<td>12</td>
<td>14</td>
<td>7</td>
</tr>
</tbody>
</table>

SNHL= sensorineural hearing loss, Het= heterochromia irides, HypE= hypoplastic blue eyes, WF= white forelock, EG= early grey, Skin= white skin patches, HNR= high nasal root, Eyb= medial eyebrow flare.

Figure 1 Facial appearance of Waardenburg syndrome. (A) Type I WS. Note dystopia canthorum, (B) Type I WS. Typical features include profound hearing loss, dystopia canthorum, pale blue eyes, white forelock, and white eyelashes on the left. This boy has a deletion of 7-8 Mb of DNA including the entire PAX3 gene. Other clinical features (mental retardation, growth retardation) are attributed to deletion of other genes. (C) Type II WS caused by a splice site mutation in the MITF gene. Note eye colour, with blue left eye and brown right eye with a sharply demarcated radial blue segment; note normal build of face with no dystopia canthorum. She has mild unilateral hearing loss. Other affected relatives with the same mutation show white forelock, early greying, and varying degrees of hearing loss.

Distances. Indices based on these three measurements are more reliable than those based upon two measures alone, although if there is strabismus the interpupillary distance cannot be used. The indices depend upon the relationship between the measurements rather than absolute measures, and so should be unaffected by age, race, or sex.

Fig 3 shows the justification for placing such emphasis on dystopia. In this data set, every family with mean W>1.95 (averaged over all affected family members), but no family with mean W<1.95, shows evidence of PAX3 involvement from linkage or mutation analysis. One family had a W value between 1.95 and 2.07, the threshold first adopted by the Waardenburg Consortium, and was published as a type II family with a PAX3 mutation.10 The data in fig 3 suggest that a threshold of 1.95, averaged across all affected family members, gives the best distinction, and reclassifies this family as WS1. As the figure shows, the eye measurements in persons with WS1 and WS2 can overlap, so the threshold cannot be taken as absolute, but it has proven a very useful guide. Its practical value is as a guide to whether or not it is worth asking the laboratory to look for a PAX3 mutation (see below).

Other Facial Features
A broad, high nasal root, medial hypertrichosis and synophrys, and hypoplasia of the alae nasi are features associated with dystopia canthorum in WS1 (table 3). Other facial features described include a patent metopic suture and square jaw.11 Strabismus may be more common with WS1 than normally.12

Eye Colour
Iris heterochromia may be complete or partial. In complete heterochromia each iris is a different colour, while in partial heterochromia the differently coloured area of the iris is sharply demarcated from the remainder and is usually, but not invariably, a radial segment (fig 1C). Partial heterochromia may be unilateral or bilateral and, if bilateral, may be symmetrical or asymmetrical. Partial heterochromia was found in 4.2% of subjects with WS1 and 27.5% of those with WS2 in our study.6

Hypoplastic blue irises are found where there is deficient iris stroma, and mainly in association with a severe or profound hearing loss.6 We found that hypoplastic blue irises were significantly more common in children with WS1 than WS2. The fundus is reported to show pigmentary changes that correspond to those found on the retina.12 13

Hair Colour
A distinctive white forelock is usually described, but the forelock may be red or black.14 The site of the forelock is usually in the midline but it may be elsewhere on the head. It may vary in size from a few hairs to a clump of hair and, if present at birth, may persist or disappear only to reappear later, usually in the teens, when it is considered to represent early greying.15 Complete depigmentation of the hair may occur in the teens and the hair may be sparse and of poor quality.7 The premature greying signifying WS is defined by the Waardenburg Consortium as predominance of white hairs appearing before the age of 30 years with the white hairs appearing in the midline.16 Pigmentation defects can affect the eyebrows and eyelashes as well as scalp hair.7

Skin Signs
Hypopigmentation of the skin is congenital and may be found on the face, trunk, or limbs. It may be associated with an adjacent white forelock. Hyperpigmentation has also been described17 and this may develop after birth in
a previously hypopigmented area. Arias1 noted that hypopigmented areas frequently had hyperpigmented borders. If depigmented patches are extensive, piebaldism (owing to mutation in the KIT gene) should be suspected, especially if the patient has normal hearing.

HEARING

The hearing loss in Waardenburg syndrome is sensorineural, congenital, and usually non-progressive. It may be unilateral or bilateral and can vary in degree from slight to profound. Hageman and Delleman7 reported that 25% of subjects with WS1 and 50% of those with WS2 had a bilateral sensorineural hearing loss. Newton18 found that the penetrance of sensorineural hearing loss varied from 69% in WS1 to 87% in WS2, after omitting the probands (who had been ascertained through their hearing loss). Variation between families was high.

A profound bilateral loss is the commonest degree of hearing loss in both types, particularly in type I. Unusual audiogram shapes include low frequency and U shaped losses, bilateral or unilateral, and sometimes a combination of a low frequency sensorineural hearing loss in one ear and a profound loss in the other.

Radiological investigation of the auditory system has indicated a normal temporal bone or dysplasia of the lateral semicircular canal associated with a normal bony cochlea.10 The histological appearance of one temporal bone studied by Fisch11 was consistent with the auditory features of type I being caused by a choledoacicular degeneration. Cochleoacicular degeneration and a complete absence of pigmentation was reported at necropsy in the inner ears of a 3 year old child with WS4. She had extensive skin depigmentation, bilateral profound hearing loss and aganglionic megasacolon, but not dystopia canthorum.14

Other associated conditions

A long list of other conditions have been reported in association with Waardenburg syndrome.19 It is difficult to disentangle to what extent these additional conditions are true rare manifestations of WS (type I or II), coincidental findings, or features of other neurocristopathies that are really separate syndromes. WS1 carries a small but definite risk of spina bifida20 21 and may occasionally be associated with Sprengel’s shoulder (unpublished observations) and with cleft lip/palate.22

Hirschsprung disease (HSCR) is unquestionably associated with Waardenburg syndrome in WS4, which as described below is recessive and caused by mutations in the EDN3 and EDNRB genes. Whether there is also an association with other forms of Waardenburg syndrome is less clear. Most reports of WS-HSCR patients date from before the distinction was made between WS1 and WS2. One might expect WS1, as a neurocristopathy, to be the form associated with HSCR, but in fact any association that may exist of WS with HSCR is with type II WS. We are aware of only a single case of HSCR among the hundreds of WS1 patients with proven PAX3 mutations (R Ramesar, personal communication).

Homozygous Waardenburg syndrome

In view of the frequency of deaf-deaf marriages, WS homozygotes are likely to be conceived from time to time. Mouse models (see below) suggest that WS1 or WS2 homozygotes are likely to be very much more severely affected than heterozygotes, and this is a point to be borne in mind in genetic counselling. Double heterozygosity (for example, WS1-WS2) is probably much less risky, although this view is not based on adequate data.

Two cases of homozygosity for WS1 have been described. Zlotogora et al23 described and illustrated a child with severe hypopigmentation, profound congenital hearing loss, and contractures of the forearms, born to a consanguineous Israeli Arab family. Both parents have typical WS1, and the child is homozygous for the PAX3 mutation S84F. The physical picture is strikingly reminiscent of Klein’s original WS3 patient. Surprisingly, there is no neural
tube defect, although in the Splotch mouse model homozygotes have lethal neural tube defects. Aymé and Philip described a fetus that was the product of brother-sister incest in a French Gypsy family with typical WS1. The pregnancy was terminated because of anencephaly diagnosed on scan; the fetus had major abnormalities very reminiscent of homozygous Sp mouse embryos, including severe contractures and webbing of the limbs. No material was available from the fetus, but we have found a PAX3 mutation N269L in a heterozygous member of the family (M Tassabehji, A P Read, unpublished data). This mutation is typical of those found in WS1.

Hultén et al described a profoundly deaf and severely depigmented child born to first cousin parents who both had white forelocks and white skin patches but normal hearing. The child might have been a WS2 homozygote, although homozygosity for piebaldism (KIT mutation) is perhaps more likely.

The neural crest in auditory-pigmentary syndromes

The association of hearing loss and pigmentary abnormalities has long been known in a variety of mammals. In his Origin of Species, Charles Darwin asked “What can be more singular than the relation between blue eyes and deafness in cats?” In all these auditory-pigmentary syndromes the underlying cause of the hearing loss is a still unexplained requirement for melanocytes in the stria vascularis of the cochlea.

There is no requirement for melanin (albinos have normal hearing), but in the absence of melanocytes the stria is abnormally thin, no endocochlear potential is generated, and later in development Reissner’s membrane collapses leading to destruction of the organ of Corti.

Thus auditory-pigmentary syndromes are caused by a physical absence of melanocytes which may affect skin, hair, eyes, or the stria vascularis. Usually the melanocyte deficiency is patchy, but alternatively a general dilution of pigmentation may be seen. In man, hearing loss with uniform dilution of pigmentation is usually described as Tietz-Smith syndrome (MIM 103500) rather than Waardenburg syndrome, but in both man and mouse, different alleles of the mi/MITF gene can cause either spotty or uniformly diluted depigmentation (see below).

All melanocytes except those in the retina originate in the embryonic neural crest. Absence of melanocytes could be because of a failure of differentiation in the neural crest, a failure of melanoblasts to migrate, or a failure to terminally differentiate and survive in their final location. Countless genes must be involved in these processes, and so the genetics of auditory-pigmentary syndromes is likely to be complex. A distinction might be made between those syndromes where only melanocytes are involved and those where there is a broader malfunction of the embryonic neural crest. A condition affecting both skin and retinal melanocytes is likely to be melanocyte specific, since retinal melanocytes are not derived from the neural crest. In Waardenburg syndrome, some WS2 may be melanocyte specific, whereas WS1 and the rare variants WS3 and WS4 are neurocraniopathies, involving the frontal bone, limb muscles, and enteric ganglia, respectively. All these extra tissues are neural crest derivatives.

PAX3 and Waardenburg syndrome type I

Foy et al mapped WS1 to the distal long arm of chromosome 2 in 1990, using a clue provided by a Japanese patient with de novo WS1 and a chromosomal inversion inv(2)(q35q37.3). The marker showing linkage was ALPP, the placental alkaline phosphatase. ALPP was said to map to 2q37, but this was based on radiolabelled in situ hybridisation results which were not totally unambiguous. ALPP is a difficult marker to use for in situ hybridisation because distal 2q contains at least three highly homologous alkaline phosphatase loci, ALPP, ALPL, and ALPLP2, which all cross react. Physically, the WS1 gene must be located at one of the inversion breakpoints in the Japanese patient, that is, 2q35 or 2q37.3. Fluorescent in situ hybridisation has now located the WS1 gene at 2q35.

On the basis of this map position, Foy et al suggested that WS1 might be homologous to the Splotch mouse mutant. This speculation proved correct when three groups identified PAX3 (originally called HusP2) and its mouse homologue Pax-3 as the gene mutated in WS1 and Sp. Although preliminary studies in human embryos suggest a similar pattern, summarising from the extensive studies of Gruss’s group, no Pax-3 transcripts were detected in any tissues of adult mouse, but transcripts were present in embryos from day 8 to day 17, peaking at days 9 to 12 during neurulation. Transcripts were concentrated in neuroepithelium, in the dorsal part of the neural groove and in the recently closed neural tube. Pax-3 is expressed longitudinally down the length of the neural tube from the hindbrain, but only in mitotically active cells of the alar and roof plates, dorsal to the sulcus limitans. These cells are the source of the neural crest. Among neural crest derivatives, Pax-3 expression was seen in the spinal ganglia and some craniofacial cells (nasal process of the first and second branchial arch derivatives), but not in melanocytes, chromaffin granule cells, the developing heart, or sympathetic ganglia. In addition to neural tissue, segmented mesoderm also contained Pax-3 transcripts between 8.5 and 11 days of gestation. Onset of Pax-3 expression coincided closely with the division of presegmented mesoderm into discrete somites, and preceded formation of the dermo-myotome and sclerotome; as the somites disso-ciate, Pax-3 expression is switched off. Note, however, that postnatal appearance or disappearance of a white forelock and greying in the teens or twenties have repeatedly been documented in WS1 families with defined PAX3 mutations, so not all effects of PAX3 are confined to neurulating embryos. Another site
of expression was the undifferentiated mesenchyme of the limb buds, explaining the phenotype of WS3. PAX3 encodes a DNA binding transcription factor, one of a family of nine human PAX proteins defined by the presence of a 128 amino acid paired domain. The prototype is the Drosophila paired (prd) gene. PAX3, PAX6, and PAX7 proteins additionally contain a homeodomain. An important research goal is to identify the DNA targets to which the PAX3 protein binds. Optimal binding sites for PAX3 protein in vitro have been determined by repeated cycles of immunoprecipitation and PCR of panels of random oligonucleotides. For the paired domain optimal binding was achieved with the oligonucleotide CGTACAG(G/C)TT, and for the homeodomain (of the Drosophila paired protein) CCGAGTCTAATTGATTACTTGACAG. Within these longer sequences, consensus core binding sequences of GTCC and GTTAC (paired domain) and ATTA (homeodomain) have been recognised. It is worth reflecting, however, that master switches in development probably depend on low affinity interactions. Downstream of the master genes, the effector mechanisms need high affinity binding to make them specific and reliable. However, the master switch, the decision point that sends only some of a population of cells down a certain developmental pathway, needs a finely balanced affinity to work. As with haemoglobin and oxygen, binding that is too strong is just as bad as binding that is too weak. Thus, the natural targets may be deliberately non-optimal. Most in vitro studies of PAX3 DNA binding have used the e5 sequence from the promoter of the Drosophila even-skipped gene; however, it should be noted that Drosophila mutants deficient in prd, or ectopically expressing prd, show no changes in even-skipped regulation. To date, only one natural target of PAX3 is known, the MET oncogene.

Over 50 different PAX3 mutations have been described in patients with WS1 or WS3. Fig 4A summarises mutations detected by our group. Unpublished data. Others have reported similar findings. The mutations are almost always different in different affected families; the only mutations seen in more than one family are 674ins(G) which inserts a seventh G into a run of six Gs, and substitutions of R270 or R271 attributable to deamination of CpG. Mutations fall into three classes.

(1) Deletions, frameshifts, splice site mutations, or nonsense mutations that are expected
The three mutations bones, but had paired mechanism genotype between human homologue MITF family mutation of ground (MIM as lies, time, II flexion all have sensorineural illy for PAX3 effects. and discussed below. Occasional discourses have been found in mice than in man. Mutations in the basic region generally produce molecules that can cause dominant negative effects by sequestering wild type molecules in dimers that cannot bind DNA correctly. Mice heterozygous for these mutations have white spotting or, in some cases, dilution of the coat colour. Homozygotes for these, or for the recessive alleles with dimerisation defects, are mainly or entirely white, and some alleles produce microphthalmia, mast cell defects, osteopetrosis, or dental defects. Compound heterozygotes sometimes have phenotypes intermediate or less severe than expected on this model. The mi protein dimer has been shown to bind to a DNA sequence AGTCATGTGCT (the M box) found upstream of several melanocyte specific genes. The CATGTG core of this sequence is a target for binding by several b-HLH-ZIP proteins. Expression of mi in mouse 3T3 fibroblasts can cause them to undergo melanocyte-like differentiation. It seems possible that mi/MITF is a master gene switching on melanocyte development, although it is also expressed in heart, and the phenotypes of some mi mutants suggest additional functions.

In humans (fig 4B), MITF mutations have been found in a modest number of families with WS2, and in one family with the phenotype of Tietz-Smith syndrome. Tietz-Smith syndrome (MIM 103500) shows hearing loss combined with uniform non-patchy dilution of pigmentation; as mentioned above, some mi mouse mutants also show dilution rather than spotting. In the dominant families that PAX3 might have helped in WS2, haploinsufficiency rather than a dominant negative effect seems the most likely pathogenic mechanism. "The wide range of recessive phenotypes seen in mice prompted a search for MITF mutations in patients with severe recessive pigmentary syndromes, but so far none has been found. All the human families are dominant, and with the exception of the single Tietz-Smith family, all have typical WS2. Perhaps the incidence of hearing loss is rather higher than in non-MITF WS2 families, but it is not strikingly different, and we cannot predict which WS2 families will carry MITF mutations. MITF mutations have been found in only about 15% of families fitting the diagnostic criteria for WS2, and the major WS2 locus or loci remains to be found.

MITF and Waardenburg syndrome type II

Hughes et al mapped the mutation in one large WS2 family to 3p12-p14. At the same time, Tachibana et al mapped MITF, the human homologue of the mouse microphthalmia gene to the same location. Microphthalmia had long been seen as a good candidate homologue for WS and mutations in MITF were soon found in several WS2 families. MITF and its mouse homologue mi encode proteins belonging to the well known family of b-HLH-Zip (basic helix-loop-helix leucine zipper) transcription factors. These proteins dimerise as homo- or heterodimers through their HLH-Zip regions and bind DNA through their basic regions. Mi/MITF is one of the few loci at which more alleles and a richer molecular pathology have been found in mice than in man. Mutations in the basic region generally produce molecules that can cause dominant negative effects by sequestering wild type molecules in dimers that cannot bind DNA correctly. Mice heterozygous for these mutations have white spotting or, in some cases, dilution of the coat colour. Homozygotes for these, or for the recessive alleles with dimerisation defects, are mainly or entirely white, and some alleles produce microphthalmia, mast cell defects, osteopetrosis, or dental defects. Compound heterozygotes sometimes have phenotypes intermediate or less severe than expected on this model. The mi protein dimer has been shown to bind to a DNA sequence AGTCATGTGCT (the M box) found upstream of several melanocyte specific genes. The CATGTG core of this sequence is a target for binding by several b-HLH-ZIP proteins. Expression of mi in mouse 3T3 fibroblasts can cause them to undergo melanocyte-like differentiation. It seems possible that mi/MITF is a master gene switching on melanocyte development, although it is also expressed in heart, and the phenotypes of some mi mutants suggest additional functions.

In humans (fig 4B), MITF mutations have been found in a modest number of families with WS2, and in one family with the phenotype of Tietz-Smith syndrome. Tietz-Smith syndrome (MIM 103500) shows hearing loss combined with uniform non-patchy dilution of pigmentation; as mentioned above, some mi mouse mutants also show dilution rather than spotting. In the dominant families that PAX3 might have helped in WS2, haploinsufficiency rather than a dominant negative effect seems the most likely pathogenic mechanism. "The wide range of recessive phenotypes seen in mice prompted a search for MITF mutations in patients with severe recessive pigmentary syndromes, but so far none has been found. All the human families are dominant, and with the exception of the single Tietz-Smith family, all have typical WS2. Perhaps the incidence of hearing loss is rather higher than in non-MITF WS2 families, but it is not strikingly different, and we cannot predict which WS2 families will carry MITF mutations. MITF mutations have been found in only about 15% of families fitting the diagnostic criteria for WS2, and the major WS2 locus or loci remains to be found.
gote of Zlotogora et al.56 have profound hearing loss, depigmentation much more severe than in WS1, and a severe amelia-type-like condition affecting the arms. (2) In the family reported by Sheffer and Zlotogora,12 people heterozygous for the PAX3 mutation N47H have typical WS1 but significant amelia, inherited as a dominant condition. The amelia is identical in pattern to that of Klein's patient, but less severe. (3) Finally, most cases labelled WS3 are sporadic or part of WS1 families, and have WS1 plus quite minor contractures of the elbows or fingers. Two cases we have tested are heterozygous for a 16 bp deletion and a 1 bp deletion, respectively, in the PAX3 gene, mutations typical of WS1.

Endothelin 3, endothelin receptor B, and Waardenburg syndrome type IV

Recent progress in identifying HSCR susceptibility genes has shed considerable light on WS4 and allowed a refined diagnosis. Patients with mutations in the endothelin 3 gene, EDN3, or the gene for its receptor, EDNRB, occasionally show a WS-HSCR phenotype, especially if homozygous.56 67 75 to Heterozygotes are usually unaffected or have isolated HSCR.66 to A family reported by Hofstra et al.76 is interesting: there is a pattern of low penetrance isolated deafness or pigmentary disturbances, resembling many families we have seen that do not quite meet criteria for WS. In the family of Hofstra et al.,77 when cousins married they produced children with typical WS4 who were homozygous for an EDN3 mutation. However, we have sought EDN3 or EDNRB mutations in our families in vain (M Tassabehji, A P Read, unpublished data). They are certainly not a common cause of WS in the absence of HSCR. Some patients with chromosomal deletions or translocations affecting the sites of EDNRB at 13q22 or EDN3 at 20q13 have pigmentary disturbances without dystopia and with78 or without79 HSCR. Mutations in other unidentified neural crest genes may also produce HSCR with pigmentary disturbances and maybe hearing loss, with or without dystopia. However, HSCR patients with RET mutations do not have melanocyte defects (M Seri, personal communication), nor probably do those with mutations in the RET ligand, GDNF.

Conclusions and summary

Research into Waardenburg syndrome provides some of the best examples of the interplay between mouse and human genetic research. PAX3 was investigated independently as a candidate gene for Splotch and Waardenburg syndrome on the basis of its map location in each species and expression pattern in the mouse. The mouse mi, Ednrb, and Edn3 genes were each cloned when mice with random transgene insertions unexpectedly showed the phenotypes of microphthalmia, piebald lethal, and lethal spotting respectively. MITF and EDNRB then became positional candidates for the 3p14 linked WS2 and 13q linked WS4 respectively, while EDN3 was investigated as a pure (non-positional) candidate gene for WS4. PAX3 and MITF illustrate how mutation analysis can help elucidate mechanisms of dominance. For PAX3 the evidence for haploinsufficiency is convincing, with the caveat that mutation of asparagine 47 may have some additional effect. For MITF the mechanisms are less certain, but it appears that here too haploinsufficiency is a major factor in producing the relatively mild abnormalities of WS2 among heterozygous mutation carriers. Dominant negative effects and pure recessive effects may also be found.

Clinically, the payoff from identifying the genes and characterising the mutations has so far been relatively modest. Diagnostic labels have been refined. WS1 and WS4 are now well defined genetic entities, while the label WS3 is largely redundant. WS2 remains a heterogeneous mix. Only a small proportion of type II families are accounted for by mutations in any of the genes defined so far. Moreover, the clinical definition of Waardenburg syndrome is not refined. Patients with MITF mutations, for example, patients with dominant partial albinism of the Tietz-Smith type or with major recessive syndromes that include severe depigmentation. We can offer families an explanation of why they have Waardenburg syndrome, but we are still unable to predict what features of WS any particular PAX3, MITF, EDNRB, or EDN3 mutation will produce in a given person. Fortunately there is little interest in prenatal diagnosis among WS families. Nor is there much prospect for gene therapy, given that the abnormalities of WS arise in the early embryo.

Research into WS has allowed definition of transcription factors important in human embryonic development, not to mention finding the first homeobox gene to be implicated in a human inherited disease. PAX3 and MITF between them exemplify three major families of transcription factors, the paired domain, homeodomain, and b-HLH-Zip proteins. Many questions remain, particularly about the precise developmental pathways in which these genes act, and the identity of modifier genes responsible for the highly variable expression in families. It was unexpected that defects in the EDN3-EDNRB system would produce developmental abnormalities, and the role of endothelins in development has yet to be elucidated. Auditory-pigmentary syndromes, as defects in cell differentiation, always promised to be biologically interesting, and research so far has amply borne out this promise.

We wish to thank May Tassabehji for her superb laboratory work, and members of the Waardenburg Consortium for sharing data and ideas. Our work was supported by the Hearing Research Trust and Wellcome Trust (grant 035301).

