Ceboccephaly, alobar holoprosencephaly, spina bifida, and sirenomelia in a stillbirth

Chih-Ping Chen, Shin-Lin Shih, Fen-Fen Liu, Sheau-Wen Jan

Abstract
Ceboccephaly and sirenomelia are uncommon birth defects. Their association is extremely rare; however, the presence of spina bifida with both conditions is not unexpected. We report on a female stillbirth with ceboccephaly, alobar holoprosencephaly, cleft palate, lumbar spina bifida, sirenomelia, a single umbilical artery, and a 46,XX karyotype, but without maternal diabetes mellitus. Our case adds to the examples of overlapping cephalic and caudal defects, possibly related to vulnerability of the midline developmental field or axial mesodermal dysplasia spectrum.

(J Med Genet 1997;34:252-255)

Keywords: holoprosencephaly; ceboccephaly; sirenomelia; spina bifida.

Sirenomelia and holoprosencephaly are well defined congenital malformations that usually occur independently. Sirenomelia, a severe form of caudal defect with an incidence of 1.5-4.2 per 100 000 births,1 is characterised by complete or incomplete fusion of the lower extremities. Various skeletal and podalic presentations of sirenomelia have been described.2 There is a 100-150 fold increase in the incidence of sirenomelia in monozygotic twins over that in singletons and dizygotic twins.3 The absence of chromosomal abnormalities and familial inheritance has been noted in almost all cases of sirenomelia. Administration of retinoic acid4 and cyclophosphamide5 to pregnant mice and hamsters, and destroying the axial portion of the caudal mesoderm of chicken embryos,6 have been reported to produce limb defects including sirenomelia. About 2% of sirenomelia cases are associated with maternal diabetes mellitus.7 Common associated abnormalities include hemivertebrae, spina bifida, meningocoele, deformed pelvis, a single umbilical artery, abnormal internal and external genitalia, urinary tract anomalies, imperforate anus, pulmonary hypoplasia, tracheo-oesophageal fistula, and cardiovascular malformation.7 Central nervous system (CNS) anomalies (table 1) present in less than 10% of patients with sirenomelia.

Holoprosencephaly (HPE), a severe form of cephalic defect with an incidence of 0.63 in 10 000 live births with normal chromosomes,8 is characterised by an anomalous craniofacial complex that involves a series of forebrain and midface malformations of graded severity.9 HPE is associated with teratogenic and genetic factors. Alcohol and maternal diabetes are known teratogenic factors. There is a 200-fold increase in the incidence of holoprosencephaly in infants of diabetic mothers over infants of non-diabetic mothers.10 Animal models involving the ingestion of the plant Veratum californicum, which contains steroidal alkaloids, can produce cyclopia in sheep embryos.11 Cytogenetic abnormalities have been reported in 50% of all HPE patients and the specific chromosome aberrations include trisomy 13, trisomy 18, triploidy, del(13q), dup(13q), del(18p), del(7)(q36), dup(3)(p24-pter), del(2)(p21), and del(21)(q22.3).12 At the Human Gene Mapping 11 Conference,13 four putative HPE genes were designated: HPE on chromosome 21q22.3, HPE2 on 2p21, HPE3 on 7q36-qter, and HPE4 on 18pter-q11. Familial HPE with a normal karyotype has been described with autosomal dominant, recessive, and X linked.

Table 1 Summary of previously reported cases of CNS abnormalities associated with sirenomelia

<table>
<thead>
<tr>
<th>References</th>
<th>CNS abnormalities associated with sirenomelia</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Craniorachischisis totalis (case report)</td>
</tr>
<tr>
<td>8</td>
<td>Craniorachischisis totalis (case report)</td>
</tr>
<tr>
<td>9</td>
<td>Anencephaly (case report)</td>
</tr>
<tr>
<td>10</td>
<td>Meningomyelocele, hydrocephalus and Arnold-Chiari malformation (1/1)</td>
</tr>
<tr>
<td>11</td>
<td>Anencephaly and ceboccephaly (case report)</td>
</tr>
<tr>
<td>12</td>
<td>Hydrocephalus (2/3)</td>
</tr>
<tr>
<td>13</td>
<td>Hydrocephalus (2/77), hydrocephalus and meningomyelocele (1/77), Arnold-Chiari malformation, absent corpus callosum, and lumbar meningomyelocele (1/77)</td>
</tr>
<tr>
<td>14</td>
<td>Anencephaly and cervicothoracic meningomyelocele (case report)</td>
</tr>
<tr>
<td>15</td>
<td>Hydrocephalus (1/11); spina bifida occulta (1/11); spina bifida with meningocoele (1/11)</td>
</tr>
<tr>
<td>16</td>
<td>Meningocoele, hydrocephalus, and others (5/54)</td>
</tr>
<tr>
<td>17</td>
<td>Anencephaly (case report)</td>
</tr>
<tr>
<td>18</td>
<td>Meningocoele (case report)</td>
</tr>
<tr>
<td>19</td>
<td>Neural tube defects (7/98) (6 low spina bifida, 1 cervical spina bifida); hydrocephalus (2/98); cyclopia (1/98)</td>
</tr>
<tr>
<td>20</td>
<td>Craniarachischisis totalis (case report)</td>
</tr>
<tr>
<td>21</td>
<td>Hydrocephalus (1/4)</td>
</tr>
<tr>
<td>22</td>
<td>Cervicothoracic spina bifida (case report)</td>
</tr>
</tbody>
</table>

*Nature of CNS abnormalities not reported.
The association of holoprosencephaly and sirenomelia is extremely rare. In 1986, Young et al11 first reported a twin infant, born at 33 gestational weeks, with cebocephaly, atelen-
ccephaly, and sirenomelia. Subsequently, only one patient with cyclopia, holoprosencephaly, and sirenomelia has been observed.12 Here, we report an additional case of holoprosencephaly with sirenomelia. To our knowledge, the com-
bination of cebocephaly, alobar holoprosen-
cephaly, cleft palate, spina bifida, and sirenom-
elia has not been previously reported.

Case report
The proband was stillborn at 28 weeks’ gestation with a weight of 1500 g and a length of 38 cm. She was the second child of a 25 year old woman. The parents are Chinese, non-
consanguineous, and healthy. There was no family history of diabetes mellitus, twins, or congenital malformations. Maternal urine throughout the pregnancy did not contain glu-
cose. The mother had one healthy 2 year old child. She denied any exposure to drugs for ovulation before conception, or alcohol, tera-
togenetic medication, irradiation, or infectious diseases during this pregnancy. Her pregnancy with this child was uneventful except that oligohydranmos was noted during the second trimester. At 28 weeks’ gestation, ultrasonogra-
phy indicated intrauterine fetal death.

Physical examination of the stillbirth showed microcephaly, ocular hypotelorism, a single nostril, cebocephaly (fig 1), malformed, low set ears, and cleft palate. Detailed evaluation showed soft tissue fusion of the lower limbs from the pelvis to the ankles. The feet were normally formed and fused at the heels. The fused lower limbs were angulated 180° posteri-
orly in relation to the trunk (fig 1). Both knees and toes pointed backwards. There was imper-
forate anus, spina bifida over the lumbar area, and absence of external genitalia (fig 2). The umbilical cord contained only a single umbilici-
ary artery and an umbilical vein. Radiographs showed two femora, two tibiae, two fibulae, incomplete rotation of the legs leading to a medial position of the fibulae, thin ribs, hypoplastic vertebrae, dextroscoliosis of the thoracolumbar spine, sacral agenesis, and poorly formed acetabula. Necropsy showed alobar holoprosencephaly with a single ventri-
cle and spina bifida occulta over the lumbar area. Data on the internal organs were not available because of severe calcification and autoysis of the tissue. A cytogenetic study was performed on Giemsa banded chromosomes from cultured chorionic villi cells and showed a normal 46,XX karyotype.

Discussion
Our case is a rare combination of type I sirenomelia1 with symposium dipus, alobar holoprosencephaly, cebocephaly, and spina bifida, without the association of maternal diabetes mellitus, monozygotic twins, abnormal chro-
mosomal complements, or familial inheritance.

Figure 1 Photograph of the sirenomiform stillbirth showing cebocephaly with ocular hypotelorism and a single nostril. The lower limbs are fused from the pelvis to the ankles and angulated 180° posteriorly in relation to the trunk.

Figure 2 (Left) Anterior view of the lower limbs showing the popliteal fossae and heels pointing forwards. (Right) Posterior view of the lower limbs and the trunk shows lumbar spina bifida, and the knees and toes pointing backwards. No external genitalia or anus are visible.
In 1989, O’Rahilly and Müller suggest that cyclopia and sirenomelia have a similar mode of formation and both may share similar aetiological and pathogenetic factors affecting the development of the axial mesoderm. In holoprosencephaly, deficiency of prechordal mesoderm occurs at or before 4 weeks of embryonic age. During the third week of embryonic life, the prechordal mesoderm migrates forwards into the area anterior to the notochord and evolves into midline facial development. The prechordal mesoderm plays a reciprocal induction role in the morphogenesis of the neuroectoderm, the forebrain. Deficiencies of prechordal mesoderm cause midfacial defects as well as incomplete forebrain development. Sirenomelia is believed to originate before 30 days of embryonic life and to occur through a failure in lateralisation secondary to a mesenchymal deficiency of the caudal eminence. The caudal eminence contributes to the formation of the notochord, vertebrae, lower limb buds, perineum, neural plate, neural cord, hindgut, and blood vessels. An extensive disturbance of the axial mesoderm can cause concomitant alteration of neural ectoderm, and consequently neural tube defects occur. Theories proposed for the pathogenesis of sirenomelia can be categorised into the vascular disruption hypothesis and the causal embryo damage hypothesis. The most likely mechanisms are believed to be a deficiency of the caudal mesoderm as well as a decrease of haemoperfusion in the caudal region and lower extremities of the embryo. In 1982, Opitz and Gilbert proposed the concept of midline developmental field. They suggested that in early embryogenesis the midline is a weakly buffered field. Difficulties in the early process of determination because of midline vulnerability may cause both duplication and deficiencies. Holoprosencephaly, spina bifida, cleft palate, and sirenomelia in this case all belong to the midline anomalies. In 1981, Russell et al suggest the term “axial mesodermal dysplasia” to describe a disturbance during early embryogenesis which affects the mesodermal cell migration during the primitive streak period. Combined anomalies in both the cranial and caudal regions have been suggested as examples of axial mesodermal dysplasia. Our case shows the combination of the most extreme anomalies of the cephalic and caudal regions of the embryo, cepholephaly and sirenomelia. It is related to deficiencies of or damage to both prechordal mesoderm and caudal mesoderm during early embryonic life and can be considered an example of axial mesodermal dysplasia. The prevalence of cases with a combination of some form of holoprosencephaly with any degree of caudal dysgenesis has been estimated at about 7.9 per million livebirths which is significantly higher than would be expected by chance. Morichon-Delvallez et al concluded that the terminal region of 7q contains gene implicated in the development of the central nervous system and the caudal region. Lynch et al further concluded that a sacral agenesis gene maps to the HPE3 holoprosencephaly gene region at 7q36 between D7S396 and the telomere, and suggested that genes at 7q36 play a critical role in differentiation of midline mesoderm at both ends of the developing notochord. Our case, a complex of cebocephaly, alobar holoprosencephaly, cleft palate, lumbar spine bifida, sirenomelia, a single umbilical artery, and a normal chromosomal complement, adds examples of overlapping holoprosencephaly and caudal dysgenesis.

Cebocephaly, alobar holoprosencephaly, spina bifida, and sirenomelia in a stillbirth

Cebocephaly, alobar holoprosencephaly, spina bifida, and sirenomelia in a stillbirth.

C P Chen, S L Shih, F F Liu and S W Jan

J Med Genet 1997 34: 252-255
doi: 10.1136/jmg.34.3.252

Updated information and services can be found at:
http://jmg.bmj.com/content/34/3/252

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/