LETTERS TO THE EDITOR

Methionine synthase and neural tube defects

Accumulated evidence implicates an abnormality of folate metabolism in the genetic aetiology of neural tube defects (NTD). Periconceptional folic acid can prevent NTD and many newborns with NTD display high levels of blood homocysteine1; low maternal vitamin B12 is another independent risk factor for NTD. These observations suggest the enzyme methionine synthase (MS), which is central to folate metabolism and which catalyses the conversion of homocysteine to methionine in a vitamin B12-dependent reaction, as a target for study. As yet there has been no investigation of the idea that mutations in the MS gene might contribute to NTD susceptibility, but the recent cloning of this gene2 now makes allele association studies possible. We have investigated DNA samples from British NTD families which include 36 affected subjects, 31 with spina bifida (SB) and five with SB occulta, and Dutch NTD families which include 32 SB, two with SB occulta, and one with encephalocele.

The MS gene has been mapped to chromosome 1q43 and shown to encode a protein of 140 kDa comprising 1265 amino acids.1 Two MS polymorphisms have been reported: an Arg111Gly polymorphism found in North American samples3 and an Asp919Gly polymorphism which occurs with a frequency of 0.15 for the less common allele in a French/Canadian population.4 The Arg111Gly variation was not detected in our British and Dutch control groups or among 25 affected subjects and their families. However, the Asp919Gly variation occurred in both control groups with a very similar frequency: Dutch MS Gly919=0.19 and British MS Gly919=0.17.

We have compared the frequencies of Asp919 and Gly919 homozygotes in normal controls of British origin (n=72) and unrelated subjects attached by marriage to Dutch NTD families (n=47) with those for the NTD cases, their mothers and fathers; no evidence for an association between either of the MS919 alleles and the occurrence of NTD was found (table 1). The risk of NTD owing to abnormalities in folate metabolism may be influenced by maternal genotype or by a combination of the maternal and fetal genotypes. The Gly919 homozygote frequency for mothers is 5.9% and for NTD offspring is 4.4% compared with 3.4% for controls (table 1); while slightly increased, these differences were not significant.

The transmission test for linkage disequilibrium (TDT)5 was used to look for allele association. We used data from 45 heterozygous parents who transmitted 49 alleles to their NTD offspring. The Asp919 allele was transmitted on 22 occasions and the Gly919 on 27 occasions (table 2). The calculated x2=0.51, p>0.25, showed that this difference was not significant. The transmission of alleles was relatively more asymmetrical in the Dutch NTD group when they were considered separately (23 transmissions, eight

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Genotype and allele frequencies of MS Asp919Gly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotype % (No)</td>
<td>Allele frequency</td>
</tr>
<tr>
<td>Asp</td>
<td>Asp</td>
</tr>
<tr>
<td>British (72)</td>
<td>66.7 (48)</td>
</tr>
<tr>
<td>Dutch (47)</td>
<td>68.1 (32)</td>
</tr>
<tr>
<td>Combined (119)</td>
<td>67.2 (80)</td>
</tr>
</tbody>
</table>

Unrelated subjects married in to NTD families (MI) were used as the Dutch control population.

<table>
<thead>
<tr>
<th>British</th>
<th>Dutch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>68.1 (32) 25.5 (17)</td>
</tr>
<tr>
<td>Combined</td>
<td>67.2 (80) 29.4 (35)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2</th>
<th>TDT for the Asp919 and Gly919 alleles in NTD families</th>
</tr>
</thead>
<tbody>
<tr>
<td>British</td>
<td>66.7 (48) 31.9 (23) 1.4 (1)</td>
</tr>
<tr>
<td>Dutch</td>
<td>68.1 (32) 25.5 (17) 6.4 (4)</td>
</tr>
</tbody>
</table>

Limb-girdle muscular dystrophy or spinal muscular atrophy: a source of diagnostic confusion?

We examined 95 patients with a clinical diagnosis of limb-girdle muscular dystrophy to determine whether diagnostic confusion with spinal muscular atrophy was common. Analysis for deletions in the SMN and NAP1 genes showed only one family in which a misdiagnosis had been made. Our results suggest that...
there is unlikely to be major confusion between the two groups.

The limb-girdle muscular dystrophies (LGMD) is a group of autonomously inherited progressive myopathic diseases. Eight different genetic types of LGMD have so far been identified, of which two are dominantly inherited and the other six recessively inherited. 1 Of the genes so far identified, three encode structural proteins of the dystrophin-associated glycoprotein complex and one encodes the muscle specific calpain. Clinically, there are insufficient data so far to distinguish between the different forms of LGMD.

In the past, LGMD has been confused with other forms of muscle disease. Patients previously diagnosed as suffering from LGMD have in some cases been shown by molecular analysis to have a dystrophinopathy (X linked) or mitochondrial or metabolic disease.

Given the extreme heterogeneity of LGMD, it is important to ensure that resources applied to track down the primary genetic defect in any particular family or case are directed by careful exclusion of all possible alternative diagnoses. It has been postulated that the milder forms of muscular atrophy (type III SMA) may be a source of diagnostic confusion in recessive LGMD. Phenotypically, both diseases show proximal muscle weakness and wasting, creative kinase levels may be raised in SMA, and EMG and muscle biopsy analyses may show conflicting or confusing results.

It is now possible to perform molecular tests for the genetic faults which are associated with chromosome 5 linked SMA. We examined a panel of 95 patients with a diagnosis of the disease. These patients were from a variety of different sources both in the UK and abroad. Some referred themselves to our department because of our research interest in LGMD, others were referred from recognised neuromuscular units. All, according to the information available, had clinical characteristics and investigations which were consistent with a diagnosis of LGMD according to one or other diagnostic criteria.

We analysed DNA samples for deletions of exons 7 and 8 of the survival motor neurone (SMN) gene (deleted in approximately 94% of milder SMA cases) 2 and also for deletions of exons 5 and 6 of the neuronal apoptosis inhibitory protein (NAIP) gene (deleted in about 67% of SMA type 1 cases and 42% of type 2 and 3 cases). 3 We found deletions in SMN and NAIP in one family. Haplo-type analysis confirmed that the affected sib in this family did share the chromosome 5 region containing the SMN and NAIP genes. The three children from this family had childhood onset of a predominantly proximal muscle weakness and wasting diagnosed clinically and on investigation as a limb-girdle muscular dystrophy. Recent re-evaluation of serum creatine kinase showed that the level remained high (576 IU/l, normal up to 180 IU/l) even many years after the onset. All had relatively slow progression of disease and normal intelligence.

We conclude that spinal muscular atrophy associated with deletions of SMN and NAIP is not a common source of confusion in the diagnosis of LGMD. The investigation may, however, be useful in those families in which there is genuine diagnostic confusion on the basis either of equivocal creatine kinase levels or conflicting results from EMG or muscle biopsy.

We are very grateful to the patients and clinicians who have helped to collect the samples for this and other studies. Financial support has been provided by the Medical Research Council of Great Britain, the Muscular Dystrophy Group of Great Britain and Northern Ireland, and the British Medical Association.

R POGUE
T JACKSON
B SAYLI
A CURTIS
K M D BUSHBY

Department of Human Genetics, University of Newcastle upon Tyne, 19/20 Clarendon Place, Newcastle upon Tyne NE2 4AA, UK

BOOK REVIEWS

If you wish to order or require further information regarding the titles reviewed here, please write to or telephone the BMJ Bookshop, PO Box 295, London WC1H 0JR, Tel 0171 383 6244. Fax 0171 383 6662. Books are supplied post free in the UK and for BFPO addresses; overseas customers should add 15% for postage and packing. Payment can be made by cheque in sterling drawn on a UK bank or by credit card (Mastercard, Visa, or American Express) stating card number, expiry date, and full name. (The price and availability are occasionally subject to revision by the Publishers.)

It has been predicted that in the coming decade cell based therapies will begin to rival traditional pharmaceuticals in many areas of medicine. Out of these will come the biotechnology of the future. This timely book largely succeeds in its goal of providing a snapshot of this rapidly expanding field. The more than 70 contributors are authorities in the field and this amply compensates for the inevitable variations in style up to date the material is.

The book is organised into sections covering overlapping scientific, technical and clinical aspects of haematopoietic cell therapy and immunotherapy introduced by succinct reviews of relevant aspects of the haematopoietic and immune systems by Moore and Soslav. The main body of the book is devoted to laboratory and clinical aspects of haematopoietic cell therapy starting with excellent reviews of progenitor assays, flow cytometry, and gene transfer techniques with Mobilisation of peripheral blood progenitor cells, perhaps the major advance in haematology in the last decade, is well covered in a series of chapters by Siballi, Toh, and Sheridan and this is followed by reviews of cell selection, purging, and expansion by some of the innovators and authorities in the field. All of these technologies is, of course, that they facilitate dose intensification strategies in the treatment of malignant disease, and approaches to this involving growth factor and cellular support in a variety of diseases are covered next. Discussion of future applications of haematopoietic cell therapy is restricted to gene therapy and cellular therapy of HIV disease but the recent success to date has been modest to say the least. Techniques for the generation of dendritic cells, perhaps one of the most promising new developments, are scarcely mentioned and this must count as a major omission. The final section of the book concentrates on experimental and clinical aspects of immunotherapy with coverage of neuronal transfection, tumour vaccines, and adoptive immunotherapy with autologous T and natural killer cells and allogeneic cells in the context of bone marrow transplantation.

Invitably some relevant topics are not covered such as gene therapy, where some workers are only mentioned in passing and a chapter on T cell depletion, perhaps the commonest type of graft engineering currently performed, would have been helpful. Regulatory issues do vary from country to country but there are no common safety concerns and discussion of these would also have been useful. Overall, however, these omissions do not detract from the value of the book which will be of interest to scientists, clinicians, and those in the biotechnology and pharmaceutical industries.

STEPHEN DEREVEUX

This book in intended for biologists wishing to understand more about molecular biology databases and methods of sequence analysis. As the editors state in their preface, it is 10 years since the publication of the widely regarded and entitled “Nucleic Acid and Protein Sequence Analysis” in this series and a new volume is certainly welcome. There are very few books covering this area and this edition is scattered in original papers and software manuals.

On the technical side, one of the most noticeable changes in working methods has been the use of the World Wide Web to access databases and software. I felt that while the preface emphasised this, some of the earlier chapters that concentrated heavily on software were rather dated, partly as a result of the time taken to publish such a book.

It would have been helpful to have a longer introduction to the book to tie together the material. For example, there was no explanation of why one chapter was devoted to soft-ware and another to a particular theoretical background.

Many of the later chapters give better balance between the theoretical background and the software and perform the analyses.

This was especially true of the chapter on Phylogenetic Estimation by Dr N Goldman,
Limb-girdle muscular dystrophy or spinal muscular atrophy: a source of diagnostic confusion?
R Pogue, T Jackson, B Sayli, A Curtis and K M Bushby

J Med Genet 1997 34: 958-959
doi: 10.1136/jmg.34.11.958-a

Updated information and services can be found at:
http://jmg.bmj.com/content/34/11/958.2.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/