Recombinations defining centromeric and telomeric borders for the hereditary haemochromatosis locus

R S Ajika, P Yu, J R Gruen, C Q Edwards, L M Griffen, J P Kushner

Abstract
Hereditary haemochromatosis (HFE) is a common inherited disorder, affecting approximately five per thousand white people of northern European descent. Genetic linkage and linkage disequilibrium studies indicate that the disease locus is tightly linked to HLA-A and D6S105. Recombination between HFE and HLA class I loci is known to be rare. We report here two pedigrees in which recombinations telomeric of HLA-A occurred. These recombinant events define new centromeric and telomeric borders for the HFE locus.

Keywords: haemochromatosis; recombination; borders.

Hereditary haemochromatosis (HFE) is inherited as an autosomal recessive trait and is characterised by malregulation of intestinal iron absorption. The inability to regulate absorption of dietary iron properly eventually leads to iron overload and damage to the liver, heart, endocrine glands, and joints. Little is known about the mechanism and regulation of iron absorption by the enterocyte. Consequently, there are no obvious functional candidates for the haemochromatosis gene product and attempts to identify the HFE gene have relied upon positional cloning strategies.

The HFE locus is linked to the class I region of the human major histocompatibility complex (MHC) on the short arm of chromosome 6. Linkage of HFE to the class I region was established 20 years ago but a precise localisation for the disease locus has not been defined. Simon et al suggested that the original HFE mutation occurred on a chromosome bearing the haplotype A3, B7. Furthermore, haplotype analyses strongly support the notion for an HFE founder chromosome. Linkage disequilibrium analyses indicate a broad candidate region for the HFE locus beginning approximately 100 kb centromeric of HLA-A and extending nearly 3 Mb telomeric. The location of disequilibrium peaks has differed in different populations and peak values have not been strong enough to define a narrow region for the HFE locus.

Borders for the HFE locus as defined by recombinations have been limited by two factors. First, recombination between HFE and markers in the class I region is rare. Second, until recently, few polymorphic markers had been mapped telomeric of the class I region. We report two pedigrees in which recombinations have occurred telomeric of HLA-F and define a centromeric boundary at locus D6S105 and a telomeric boundary for the HFE locus at marker D6S1545.

Materials and methods
EXPERIMENTAL SUBJECTS
All participants gave verbal and written informed consent. All procedures used were reviewed and approved by the University of Utah Institutional Review Board and the Clinical Research Center Advisory Committee of the University of Utah. People were considered to express the HFE phenotype if they met one or more of the following criteria: transferrin saturation greater than 62% for men and greater than 50% for women; an unexplained rise of serum ferritin concentration greater than 325 ng/ml for men and greater than 125 ng/ml for women; hepatic parenchymal stainable iron grade 2–4 (normal 0–1); a raised hepatic iron concentration greater than 140 μg iron per 100 mg liver dry weight. Sibs who were HLA identical to a proband were evaluated with the same tests as the probands.

CLINICAL EVALUATION
Participating relatives underwent measurement of serum iron concentration, percent saturation of transferrin, and serum ferritin concentration. Hepatic storage iron was assessed by a microscopic grading method and by atomic absorption spectroscopy. Liver tissue was stained for iron using Perl’s reagent. The hepatic parenchymal cell stainable iron was determined as described earlier.

DNA SAMPLES AND MARKERS
HLA assignments were made using standard serological assays. DNA was isolated from peripheral blood lymphocytes using previously described methods. Alleles for the molecular markers were determined by PCR amplification followed by electrophoresis on sequencing gels. Both radioactive and fluorescent labelling methods were used. The microsatellite markers analysed were D6S265, 306, 464, 105, 299, and 461, D6S1260, D6S1558, GATA-p19326, D6S1545, and D6S1691, AFM207wh2 and AFMa223xd9. PCR con-
Recombinations defining borders for the hereditary haemochromatosis locus

![Diagram](image)

Figure 1. Polymorphic markers used for haplotyping in recombinant pedigrees. Double slashes denote regions where the horizontal line does not reflect physical distance. For markers spanning D6S105-D6S1691, the order is known, but physical distances have not been determined. Genetic distances are according to Gyapay et al.23

Conditions were as follows: 100 ng template, 10 mmol/l Tris-HCl (pH 8.3), 40 mmol/l NaCl, 200 μmol/l each dNTP, 0.5 μmol/l each primer, 1.25–1.5 mmol/l MgCl2, 0.25 U Taq polymerase, 0.2 mmol/l spermidine HCl, in a 20 μl reaction volume. After an initial 94°C denaturation step, PCR cycles were as follows: 56°C–66°C (depending on primer set) 20 seconds, step down 1°C per cycle to 48°C–62°C, then 30 cycles.

HAPLOTYPE ANALYSIS

Haplotypes were constructed by pedigree analysis. Controls were selected from spouses marrying into our pedigrees, pedigree members sharing no HLA haplotype in common with the proband, or family members whose genotype could be confirmed within the pedigree. All controls had normal values for percent saturation of transferrin and for serum ferritin concentration.

Results

GENETIC MARKERS

Polymorphic markers extending from HLA-B to D6S285 were used for recombinant screening and haplotyping (fig 1). The markers span a genetic distance of approximately 13 cM.24 HLA-A and -B alleles were determined by

<table>
<thead>
<tr>
<th>Pedigree</th>
<th>2 cM</th>
<th>6 cM</th>
<th>1 cM</th>
<th>3 cM</th>
</tr>
</thead>
<tbody>
<tr>
<td>D6S105</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6S299</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6S461</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6S422</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6S285</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X indicates evidence of recombination. O indicates uninformative genotype. — indicates no evidence of recombination. Estimated genetic distances are displayed in centimorgan units.

Table 2 Clinical data for recombinant pedigrees

<table>
<thead>
<tr>
<th>Pedigree</th>
<th>Serum Fe (μg/dl)</th>
<th>Tf sat (%)</th>
<th>Serum ferritin (ng/ml)</th>
<th>HPCSI (0–4)</th>
<th>Fibrosis</th>
<th>HIC (mg/100 mg)</th>
<th>Mobil Fe (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedigree 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Abbreviations: HPCSI = hepatic parenchymal cell stainable iron. HIC = hepatic iron concentration (mg/100 mg liver dry weight). Mobil Fe = mobilizable iron in grams. †Normal values are shown in bold. nd = not determined.
serotyping. Alleles for the remaining loci are characterized by short tandem repeat elements and assignments were made by electrophoresis of the PCR amplified products.

SCREENING FOR RECOMBINANTS

Our goal was to identify recombinations in the region telomeric of HLA-A among members of well characterized haemochromatosis pedigrees. The result of such recombinations would either be loss or retention of the HFE allele. Loss of the HFE allele may be difficult to establish because of variable penetrance of the disease phenotype. This is of particular importance in diagnosing women as up to 40% of affected, premenopausal women may have no detectable abnormality of iron metabolism. To avoid the problem of variable penetrance we first sought evidence of recombinations telomeric of HLA-A in HLA identical, affected sibs. Sib sets from 59 pedigrees were screened for recombinations by serotyping at telomeric loci. Locus D6S295 is approximately 11 cM telomeric of D6S105 (fig 1) and 15 cases from 151 subjects analysed displayed different genotypes at this locus. This group was then screened using markers extending centromeric towards the class I region. A summary of these data is shown in table 1.

HAPLOTYPING IN SPECIFIC PEDIGREES

Pedigrees 12 to 15 had affected, HLA identical sib pairs with different genotypes at locus D6S299. These pedigrees were then haplotyped using the more centromeric polymorphic markers described earlier (fig 1). Pedigrees 13 and 15 were of particular interest because the recombination extended centromeric of D6S299. In pedigree 15, subjects II.1 and II.3 are HLA identical, clinically affected (table 2), and recombinant between markers GATA-p19236 and D6S1545 (fig 2). The recombination is confirmed in III.1. Because the affected phenotype was not lost in the recombination, the HFE locus must be telomeric of D6S1545.

A different situation was found in pedigree 13 (fig 3). Haemochromatosis in subject II.1 was first detected in 1988 at the age of 39. He sought medical attention because of fatigue, epigastric pain, and arthralgias. He had no known relative with haemochromatosis. Abnormal physical findings included grey skin pigmentation and hepatomegaly. Laboratory studies showed a raised serum iron concentration (233 μg/dl), a transferrin saturation of 96%, a serum ferritin concentration of 2955 ng/ml, and a hepatic iron concentration of 2867 μg/100 mg liver, dry weight. The diagnosis of haemochromatosis was confirmed by percutaneous needle biopsy of the liver, which showed grade 4 hepatic parenchymal cell stainable iron and hepatic fibrosis. Seventy-one phlebotomies (500 ml each), performed once weekly, were required to produce iron limited erythropoiesis and to reduce the serum ferritin concentration to 18 ng/ml. Phlebotomies continued to be done at three monthly intervals. In the autumn of 1995, the serum ferritin was 32 ng/ml, the serum iron 249 μg/dl, and the transferrin saturation 65%.

The HLA identical brother of the proband (II.3) is younger by one year and was evaluated as part of a pedigree analysis. Although he was clinically well, he was initially assumed to be affected, based on HLA identity to the proband. His physical examination was normal. Iron studies showed a serum iron of 135 μg/dl, a transferrin saturation of 39%, and a serum ferritin concentration of 208 ng/ml, all normal values. A liver biopsy showed no increase in hepatic iron (hepatic parenchymal cell stainable iron grade 1), hepatic iron concentration 119 μg/100 mg dry weight, and no evidence of fibrosis. Subject II.3 has been evaluated on a regular basis for the last eight years. Serum
Recombinations defining borders for the hereditary haemochromatosis locus

Figure 3 Pedigree showing a recombination defining a centromeric border for the HFE locus. Asterisk denotes affected chromosome. Alleles from the recombined chromosome are shown in bold. Hatched areas indicate carrier allele suggested by HLA serotype. The parents in this pedigree are dead and parental haplotypes are inferred. The shaded box represents markers which might be included in the recombinant region, but parental haplotypes are uninformative. The arrow indicates the recombination.

Iron determinations have ranged from 135 μg/dl to 189 μg/dl. Serum transferrin saturations have ranged from 39% to 53%. Serum ferritin concentrations have ranged from 130 ng/ml to 208 ng/ml, all normal values for males (table 2). This person remains in good health and no phlebotomies have been performed.

In pedigree 13 the recombination in subject II.3 begins at locus AFM207wh2. The inferred parental haplotypes (both parents dead) at D6S1558 and D6S1260 are uninformative for the recombined chromosome owing to homozygosity at these loci (fig 3). Inheritance of the recombinated chromosome was confirmed in III.2 and III.4. These results indicate that the HFE allele was lost in the recombination, and places a centromeric boundary for HFE between D6S105 and AFM207wh2. There is also an apparent recombination in II.6 between D6S306 and D6S464. The recombinated chromosome was inherited by III.4. Neither II.6 nor III.4 show any clinical evidence of iron overload.

Discussion

Linkage between HFE and HLA-A3 is well documented and HLA-A has served as a land-

---

[Pedigree diagram with HLA-A and HLA-B alleles marked, showing recombination points and affected individuals.]

---
mark in attempts to localise the disease locus. The strong allelic association is because of a founder effect, and ancestral haplotypes for the HLA-A3 HFE chromosome have been reported previously. Linkage disequilibrium methods have been used to narrow the region containing the HFE locus. These analyses indicated that an unusually large region, extending to 3 Mb from HLA-A to D6S1260, is in significant disequilibrium with HFE, but no unequivocal peak of linkage disequilibrium has been defined. Several factors might explain such a broad region of disequilibrium. First, any phenomenon which reduces recombination would preserve the ancestral haplotype. A recent report compared physical and genetic distances in the human MHC. The estimated genetic distance of the class I region was approximately one third that expected based on comparisons of genetic versus physical distances in the class II and III regions. This apparent suppression of recombination may extend into the telomeric flanking regions. Second, the HLA-A3 associated HFE mutation may have occurred quite recently and the founder chromosome may not yet have had enough time to undergo significant recombination. Under these conditions, allelic associations would be preserved, resulting in a broad region of linkage disequilibrium. A relatively recent founder HFE mutation would also make disequilibrium analysis very sensitive to population differences and may explain discrepancies in reported disequilibrium peaks. Although disequilibrium analysis has been useful in identifying other disease loci, the lack of a single, strong disequilibrium peak limits its use in localising the HFE locus.

Recombinations within pedigrees have been used to define borders for candidate loci. Recombinations between HFE and class I markers are rare and HLA identity to an affected sib has been a reasonable predictor for the disease genotype. A recombination in the region centromeric of HLA-A has already been identified and mapped between HLA-E and C. The recent development of polymorphic markers telomeric of the class I region permitted us to define a new centromeric border at locus D6S105 for the HFE candidate region. We therefore concentrated on the markers distal to HLA-A in order to define a telomeric border for the HFE candidate region.

The clinically unaffected sib in pedigree 13 (II.3) has been carefully followed for eight years. No disease has been identified that might have caused iron loss. The caveat of incomplete penetrance remains but this has not been known to occur in males. The molecular evidence for recombination in II.3 suggests that the crossover resulted in loss of the disease allele. Possible recombinations resulting in a similar situation have been reported previously but the crossover points have not been described. We can assign a centromeric boundary between D6S105 and AFM207wh2, but the intervening markers were uninformative owing to homoygosity at these loci in the parental chromosomes.

Our assignment of a telomeric border between D6S1545 and GATA-p19326 seems clear as the crossover occurred in a person who clearly retained the homozygous HFE phenotype (II.1, fig 2, table 2). Additional recombinant pedigrees are being sought to define the HFE borders. This is important because of the many new polymorphic markers being mapped telomeric of the class I region. A recombination placing the HFE locus telomeric of HLA-F has been reported but our data move the centromeric boundary to a region distal to D6S105. As more informative markers are developed and mapped in this region, the candidate region should be narrowed further.

The authors thank Diana Dimirrova and Janine Barrow for excellent technical assistance. Drs J Kaplan and C Perou provided helpful comments and discussion. RKA and JFW were supported by NIH DK-20630. RKA was supported in part by NIH T32DK45819-03 and March of Dimes 6-FY95-0050. Some genotyping was performed in the Genomics Core Facility of the Huntsman Cancer Institute. Patient samples were collected in the Clinical Research Center at the University of Utah School of Medicine.

3 Simon M, Leducqion L, Fauchet R, et al. A study of 609 HLA haplotypes marking for the following: (1) mapping of the gene near the HLA-A locus and convenience to define a heterogametic population, and (2) hypothesis concerning the underlying cause of haemochromatosis-HLA association. Am J Hum Genet 1987;41:89-105.
17 Brown PA, Bowlus C, Choi J, et al. FISH-mapped CEPH YACs spanning 0 to 46 cm on human chromosome 6. (Submitted.)
20 Martin M, Mand l, Carrrington M. Recombination rates across the HLA complex: use of microsatellites as a rapid
Recombinations defining borders for the hereditary haemochromatosis locus


Recombinations defining centromeric and telomeric borders for the hereditary haemochromatosis locus.

R S Ajioka, P Yu, J R Gruen, C Q Edwards, L M Griffen and J P Kushner

_J Med Genet_ 1997 34: 28-33
doi: 10.1136/jmg.34.1.28

Updated information and services can be found at:
http://jmg.bmj.com/content/34/1/28

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/