Syndrome of the month

Pendred syndrome

William Reardon, Richard C Trembath

Almost uniquely among syndromic forms of deafness, Pendred syndrome has been the subject of wide ranging epidemiological study indicating that it may account for up to 7.5% of all cases of childhood deafness.1 Remarkably the condition has been substantially overlooked in recent years. However, the recent mapping of the Pendred locus to chromosome 7q31 and the reporting of locus homogeneity have brought the syndrome back into focus as a distinct clinical entity.23 (J Med Genet 1996;33:1037-1040)

Key words: Pendred syndrome; deafness; thyroid dysfunction.

The natural history of the syndrome first described by Vaughan Pendred (fig 1) in 1896 has not followed a streamlined course, largely owing to the variable clinical presentation and the absence of a specific diagnostic test. Pendred reported an Irish family, resident in the north of England, in which two adult females were deaf and had large goitres, the first evidence of which was dated from the age of 13.4 Over 30 years later and without reference to Pendred’s report, Brain5 presented details of four families with two or more children affected. Phenotypic variability and, occasionally, difficulty in classifying families/patients as having Pendred syndrome or otherwise are central themes emerging both from Brain’s report and Fraser’s later study of 207 families, comprising 334 cases of Pendred syndrome.1 Fraser’s study established Pendred syndrome as an important and relatively common cause of inherited deafness, estimating a prevalence of 75 cases per million population.

The exact proportion of genetic deafness attributable to Pendred syndrome is uncertain. Fraser’s estimate of 7.5% of all childhood deafness considerably exceeding more recent estimates.6 The 7.5% estimate was derived from an adult deaf population, the argument being that the lower figures, varying from 4.3% to 6.4% obtained in large scale studies of pediatric deaf populations, masked those cases of Pendred syndrome in whom the goitre was not detectable in childhood.1 That this high prevalence figure has not been corroborated in later studies may, at least in part, reflect difficulties in ascertainment, there being no single definitive diagnostic test for the condition.

That deafness and thyroid dysfunction are aetiologically related is beyond dispute. Trotter7 summarised the situation in 1960, distinguishing clearly between deafness in relation to endemic cretinism/goitre and sporadic goitre with deafness (Pendred syndrome). He drew attention to the several reports identifying unusually high rates of deafness in geographically distinct areas noted to be regions of endemic goitre. Frequently the deafness and goitre were observed in the same people and a likely causative link was further substantiated by the observation in Switzerland of a positive correlation between the falling incidence of deafness over time and the extent of salt iodisation.

Fraser’s criteria for the diagnosis were congenital deafness, goitre, and a positive perchlorate discharge test. Latterly some authors have advocated that a Mondini malformation of the cochlea be included as an essential prerequisite to the diagnosis8 and have recognised a degree of plasticity in the matter of goitre.

Figure 1 Dr Vaughan Pendred (1869-1945), after whom the syndrome is named.
Congenital deafness: audiovestibular studies in Pendred syndrome

Typically the disturbance is of moderate to severe degree sensorineural loss, being more pronounced in the higher frequencies. The deafness is thought to be congenital and is certainly prelingual in most cases. One report of 17 unrelated cases found evidence of progression of the hearing impairment in three patients and in our own series of 50 cases we have observed cases in whom the hearing dysfunction escaped detection until adult life. Despite anecdotal observations of abnormality, there has been no detailed systematic study of vestibular parameters in Pendred syndrome.

Thyroid dysfunction in Pendred syndrome

Classically the goitre appears in mid-childhood, but is often postpubertal, especially in males. There are rare instances of congenital goitre. The goitre tends to be diffuse initially but may become nodular. There is distinct infratfamilial variability in the presence and extent of goitre between affected subjects (fig 2). While Johnsen et al suggest that up to 50% of cases are hypothyroid, Fraser’s experience, in a far larger study, was that most cases are euthyroid. Many cases do come to surgery for tracheal compression, this hazard being more common among females. Most cases undergoing subtotal thyroidectomy suffer recurrence of the goitre. While goitre was essential to the diagnosis in early reports, identification of the thyroidal defect before the development of goitre is now facilitated by the perchlorate discharge test.

The perchlorate discharge test

In a normally functioning thyroid gland inorganic iodide, having been trapped, is immediately organified by binding to thyroglobulin. Iodination of thyroglobulin requires the generation of H₂O₂ and the oxidation of iodide and tyrosyl residues by the enzyme thyroid peroxidase. The subsequent coupling of iodotyrosyls into iodothyronines T₃ and T₄ within the matrix of thyroglobulin is also governed by thyroid peroxidase. Perchlorate and thiocyanate unmask defects of organification by provoking the discharge of inorganic iodide from the gland. As a result, administration of potassium perchlorate in the presence of an organification defect, having primed the thyroid with radiiodide results in a dramatic fall in the counting rate from sequestered radioiodide over the thyroid, as observed by Morgans and Trotter in 1958. In the case of complete block of organification, thyroidal radioactivity declines in parallel with the plasma radioiodide. A discharge in response to perchlorate of 10% or greater is considered abnormal (fig 3). Similar levels of iodide discharge may also be recorded in autoimmune thyroid disease and thyrotoxic patients treated with radioactive iodine. Hence the perchlorate discharge data must always be considered in the context of clinical and other investigative data.

Radiological studies in Pendred syndrome

The first radiological report appears to be that of Illum et al., who observed Mondini abnormalities in eight of 13 cases examined by temporal bone tomography. CT demonstration of the Mondini abnormality (fig 4) was reported by Johnsen et al in a cohort of cases already known to have the malformation from tomograms. The Mondini malformation is neither a consistent nor specific observation in Pendred syndrome, being well recognised in other forms of deafness, both genetic and non-genetic.

The inherited basis of Pendred syndrome

Brain considered a single recessive trait of pleiotropic effect, segregating in a mendelian manner affecting “several children of normal parents in the absence of a family history of the complaint...manifested by both males and females equally” as the likely basis of Pendred syndrome. Fraser concurred, the evidence for autosomal recessive inheritance in his study (the largest on record) being supported not...
Pendred syndrome

Figure 4 Axial CT section showing probable slight deficiency of the intercalar septum in the distal coils of the cochlea to give a bilateral Mondini cochlear malformation (arrowed).

only by segregation analysis but also by the observation of parental consanguinity in 22 of 186 fully documented pedigrees with Pendred syndrome. More recently, Gausden et al. have drawn attention to several examples of definitely affected, unrelated subjects marrying and producing only affected offspring, observations which in themselves are strongly supportive of autosomal recessivity and locus homogeneity. McKusick, while accepting that most cases are likely to represent an autosomal recessive condition, does cite a single example of "pseudodominance". It seems clear that Pendred syndrome does comply with the criteria for autosomal recessive inheritance in most families.

Molecular genetic studies in Pendred syndrome

Subsequent to the exclusion of TPO and thyroglobulin loci, Pendred syndrome has been mapped to chromosome 7q31. Sheffield et al. studied two inbred Middle Eastern kindreds and, applying the autozygosity mapping strategy, defined a 9 cM critical interval of homozgyosity. In a panel of 12 unrelated British and Israeli sibships, Coyle et al. independently mapped the Pendred locus to a 5 cM region flanked by the markers D7S501 and D7S523. Neither study showed any evidence for locus heterogeneity. We have recently exploited these findings in a diagnostic capacity in a sibship, offspring of first cousin parents, presenting with deafness. Thyroid function tests were normal and neuroradiology of the cochlea was normal. However, in view of the clinical impression of slight enlargement of the thyroid in one of the sibs, we sought evidence for homozgyosity at the Pendred locus (fig 5), rather than proceeding directly to perchlorate discharge testing. Homozgyosity was confirmed and a perchlorate discharge of 60% was subsequently recorded in this child.

Interestingly, Pendred syndrome maps to the region containing the recently reported non-syndromic autosomal recessive deafness locus DFNB4. This latter report was based upon a single inbred Druze kindred in Israel in which the disorder was localised by the autozygosity approach. In the context of the apparent co-localisation of Pendred syndrome and DFNB4, it is worth noting that the Druze family was not investigated for Pendred syndrome. Whether DFNB4 represents Pendred syndrome, an adjacent deafness locus, or an allelic form remains to be resolved. The identification of non-syndromic autosomal recessive loci for deafness is complicated by significant locus heterogeneity, nine such loci having been mapped to date. In contrast, the locus homogeneity found in Pendred syndrome and the availability of multiple independent families should facilitate a positional cloning approach to gene identification.

Towards the molecular basis of Pendred syndrome

The linkage interval for Pendred syndrome does not contain any recognised candidate genes. Foremost among the prerequisites of any such candidate are the reconciling of both thyroid and cochlear involvement. Both organs are of ectodermal derivation. Moreover, thyroid hormone receptor genes are widely expressed during auditory neurogenesis and homozgyous deletion for the thyroid hormone beta receptor is known to result in sensorineural deafness. Little is known of the role or contribution of iodide to normal inner ear development and function. The pathway of iodide organification required in the production of thyroid hormones occurs within the follicular cells of the thyroid gland. This process requires
the generation of H$_2$O$_2$ in conjunction with the enzyme thyroid peroxidase. In the total iodide
generation defect (TIOD), an independent
autosomal recessive condition characterised by
congenital hypothyroidism alone, and a greater
than 90% iodide discharge following per-
chlorate administration, a range of mutations in
the coding sequence of the thyroid peroxidase
gene have been established.24–26 For two distinct
reasons the molecular basis of Pendred syn-
drome is likely to represent an organisation
defect. Firstly, the perchlorate induced dis-
charge of iodide in TIOD shows a causal rela-
tion between defective organisation and perchlorate sensitivity. Secondly, Sheffield
et al.,1 by in vitro analysis of thyroid tissue from
affected patients, have shown a post iodide
uptake defect and an organisation defect with
proportionate reduction in T$_3$ secretion. Nei-
er of these observations exclude a defect in
the intracytoplasmic domains of the iodide
transporter.

Our work on Pendred syndrome is supported by the MRC and
the Hearing Research Trust. We are grateful to our collaborators
Dr Peter Phelps and Professor Keith Britton for permission to
reproduce radiographs and perchlorate discharge results,
respectively. Fig 5 is reproduced courtesy of Ma E Gauden.
We acknowledge the assistance of the Royal College of Physicians in
locating fig 1. We especially thank Becky Coffey for reading the
manuscript.

1 Fraser GR. Association of congenital deafness with goitre
(goitre and sensorineural hearing loss) maps to the region
containing the nonsyndromic deafness gene DFNB4 on
3 Sheffield VC, Kraem Z, Beck JC, et al. Pendred syndrome
can be assigned to chromosome 7q21-34 and is caused by an
intrinsic defect in thyroid iodine organisation. Nat Genet 1996;
4 Pendred V. Deaf mutism and goitre. Lancet 1966;i:532.
5 Brain WR. Heredity in simple goitre. J Q J Med 1927;20:
303–19.
6 Cockley JC, Keir EH, Connolly JF. The association of
thyroid dysormogenesis and deafness (Pendred syn-
drome): experience of the Victorian neonatal thyroid
screening programme. J Paediatr Child Health 1992;28:
398–401.
7 Trotter WR, The association of deafness with thyroid dys-

8 Johnsen T, Sorensen MS, Feldt-Rasmussen U, et al. The
variable intramembranous expression in Pendred's syndrome.
Acoustic, vestibular and radiological findings in 17 un-
10 Amvig J. Vestibular function in deafness and severe hardness
11 Illum F, Kaer HW, Hvildsgaard-Hansen J, et al. Fifteen cases of
12 Das VK. Pendred's syndrome with episodic vertigo, tinnitus
and vomiting and normal bithermal caloric responses. J
13 McKusick VA. Mendelian inheritance in man. 11th ed. Bal-
14 Morgans ME, Trotter WR. Association of congenital deaf-
ness with goitre. The nature of the thyroid defect. Lancet
15 Vassart G, Dumont JE, Refetoff S. Thyroid disorders. In:
Svetr CR, Beaudet AL, Sly WS, Valle D, eds. The
16 Morgans ME, Trotter WR. Defective organic binding of
iodide by the thyroid in Hashimoto's thyroiditis. Lancet
17 O'Mahoney CF, Luxon LM, Chess SL, et al. When the
trity of congenital hearing loss, goitre and perchlorate
positive is not Pendred's syndrome. J Audiol Med (in
press).
18 Johnsen T, Videbaek H, Olsen KP. CT-scanning of the
cochlea in Pendred's syndrome. Clin Otolaryngol 1989;14:
389–93.
19 Gauden E, Armour JAL, Kelch B, et al. Thyroid peroxidase:
evidence for disease gene exclusion in Pendred syndrome.
20 Baldwin CT, Weiss S, Ferrer LA, et al. Linkage of congenital,
recessive deafness (DFNB4) to chromosome 7q31 and evidence for genetic heterogeneity in Middle Eastern
21 Bradley DJ, Towe HC, Young WS III. Alpha and beta
thyroid hormone receptor (TR) gene expression during auditory neurogenesis: evidence for TR isoform-specific
transcriptional regulation in vivo. Proc Natl Acad Sci USA
22 Takeda K, Balzano S, Sakurai A, DeGroot LJ, Refetoff
S. Screening of 19 unrelated families with generalised
resistance to thyroid hormone for known point mutations
in the thyroid hormone receptor beta gene and the de-
23 Takeda K, Sakurai A, DeGroot LJ, Refetoff S. Recessive
inheritance of thyroid hormone resistance caused by com-
plete deletion of the protein coding region of the thyroid
hormone receptor beta gene. J Clin Endocrinol Metab 1992;
74:40–55.
24 Abromowicz MJ, Targonik HM, Varela M, et al. Identi-
fication of a mutation in the coding sequence of the
human thyroid peroxidase gene causing congenital goiter.
25 Bikker H, Drent-Hartog MT, Baas F, et al. 2-base pair du-
plication in the human thyroid peroxidase gene results in
a total iodide organisation defect and congenital hypo-
inactivating mutations in the human thyroid peroxidase
gene by denaturing gradient gel-electrophoresis. Hum Mut-
Pendred syndrome.

W Reardon and R C Trembath

J Med Genet 1996 33: 1037-1040
doi: 10.1136/jmg.33.12.1037

Updated information and services can be found at:
http://jmg.bmj.com/content/33/12/1037.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/