Renal tubular leakage complicating microcephalic osteodysplastic primordial dwarfism

J Eason, C M Hall, J Q Trounce

Abstract
We describe a male infant with phenotypic and radiological features of microcephalic osteodysplastic primordial dwarfism type II/III. He showed severe osteoporosis and biochemical derangement owing to renal tubular leakage, which has not previously been reported in this condition. He died aged 5 months.

We describe a male infant with microcephalic osteodysplastic primordial dwarfism. The purpose of this paper is to report the previously unrecognised complication of renal tubular leakage.

Case report
Our patient was the second child born to healthy, non-consanguineous parents. The mother, aged 39 years, had no history of miscarriages. She was a non-smoker and on no medication during pregnancy. Increasingly severe intrauterine growth retardation was noted on antenatal ultrasound scanning from 17 weeks onwards and maternal alphafetoprotein level was raised. Cordocentesis showed a normal karyotype. Labour was induced at 36 weeks owing to the growth retardation and normal vaginal delivery ensued.

Birth weight was 1260 g, length 40 cm, and occipitofrontal circumference 27 cm (all parameters well below the 3rd centile). He had large and protruding eyes and nose, micrognathia, low set, simple ears, and a short neck (fig 1). The hands were relatively broad with short fingers (all of similar length) (fig 2) and bilateral single palmar creases. He showed a lack of subcutaneous fat and sparse eyebrows and lashes, but normal growth of scalp hair.

The neonatal course was complicated by recurrent apnoea, hyperbilirubinaemia, hyperglycaemia, and hypotonia. Aged 9 weeks he had recurrent seizures which responded to phenobarbitone. EEG showed no focal abnormality. He showed developmental delay with no social smile detected and dependence on tube feeding throughout his life. His postnatal weight gain was satisfactory but length and head circumference deviated further below the 3rd centile.

Radiographs showed several skeletal abnormalities. The iliac wings were short and the acetabular roofs horizontal and irregular (fig 3). There was an increase in the intervertebral spaces with mild flattening of the vertebral bodies. The upper femora were broad. The clavicles were long. The metacarpals and phalanges were short and broad with pronounced cupping of the proximal ends. The metaphyses were flared and showed some irregularity. The anterior fontanelle was patent but extremely small. Absence of ossification of the epiphyses at the knee and foot suggested severe growth retardation. There was generalised osteoporosis (fig 3).

Blood and urine tests for intrauterine infection were negative. Karyotype confirmed 46,XY (including skin fibroblasts to exclude mosaicism). Random growth hormone level was 7.9 mU/l, insulin level <25 pmol/l, and C peptide <75 pmol/l. He also showed normal thyroid function, plasma cortisol, blood amino acids, lactate and pyruvate, immunoglobulins, urinary organic acids, urine culture, and renal...
Renal tubular leakage complicating microcephalic osteodysplastic primordial dwarfism

Figure 3  Radiograph showing short iliac wings and horizontal, irregular acetabular roofs. The upper femora are broad. Note the severe generalised osteoporosis.

tract ultrasound. Early cranial ultrasound was normal but aged 10 weeks showed cerebral atrophy.

He developed persistent hyponatraemia, hypokalaemia, hypocalcaemia, and hypo-phosphate. He was not acidic. Investigations showed a renal tubular leak of amino acids (generalised), protein, glucose, potassium, calcium, and phosphate. Large doses of supplements (potassium dihydrogen phosphate, sodium hydrogen phosphate, and potassium chloride) were required.

He eventually died of a chest infection aged 5 months. Permission for necropsy was declined.

Discussion

In a series of papers Majewski et al1,3 defined three main groups of microcephalic osteodysplastic primordial dwarfism distinct from Seckel syndrome. Winter et al4 suggested that types I and III were very similar and the x-ray differences may be age dependent. Meinecke and Passarge5 suggested that the term “type III” should be abandoned altogether leaving only the two types. As well as extreme growth retardation and microcephaly our patient showed characteristic facial features of microcephalic osteodysplastic primordial dwarfism type I/III (protuberant eyes, micrognathia, prominent occiput, and low set ears). The radiological changes were typical apart from the marked osteoporosis. Our infant displayed the previously unreported feature of a generalised renal tubular leak. He showed persistent hypokalaemia despite supplements and needed a very high level of sodium input to maintain a normal serum level. The calcium and phosphate loss probably caused his osteoporosis. The two cases reported by Meinecke and Passarge5 showed normal urinary amino acids. Our infant showed early hyperglycaemia like that reported by Van Maldergem et al6. Glucose intolerance with glycosuria is a recognised feature of certain dwarving syndromes such as leprechaunism. However, our case showed persistent glycosuria after the blood sugar level normalised, suggesting renal tubular leakage. Unilateral hydronephrosis has been reported but our baby had a normal renal tract ultrasound. Unfortunately our patient did not undergo necropsy. Winter et al4 reported microscopic abnormalities of the kidney with focal dilatation of the proximal tubules and fibrin deposits occluding the capillaries of a few glomeruli.

We cannot explain this new finding but the knowledge of its existence adds to the complex list of problems this syndrome entails. Its recognition carries important therapeutic implications.

The authors are grateful to Mrs Wendy Jones for typing the manuscript and the Department of Medical Illustration, Royal Sussex County Hospital, Brighton, for the photographs.


Renal tubular leakage complicating microcephalic osteodysplastic primordial dwarfism.
J Eason, C M Hall and J Q Trounce

doi: 10.1136/jmg.32.3.234

Updated information and services can be found at:
http://jmg.bmj.com/content/32/3/234

**Email alerting service**

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/