Evaluation of candidate genes for familial brachydactyly

Joan M Mastrobattista, Pascal Dollé, Susan H Blanton, Hope Northrup

Abstract
Type A1 brachydactyly in humans is a recognisable syndrome characterised by shortening of the middle phalanx of all digits with occasional fusion of the middle and terminal phalanges. The purpose of this study was to evaluate candidate genes for type A1 brachydactyly in two families with multiple affected members. Several classes of genes have been implicated in the control of distal limb development including homeobox containing genes (MSX1, MSX2), some members of the homeobox gene family, and genes encoding growth factors of the FGF, TGF, and PDGF families. Homeobox (Hox) genes are a family of developmental control genes activated early in embryogenesis that encode positional information along the anterior-posterior body axis and specify distinct spatial domains within developing limbs. Growth factor genes can regulate the proliferation and differentiation of various embryonic structures including limb buds and have been shown to influence Hox gene expression. Candidate genes HOXD, MSX1, MSX2, FGF-1, and FGF-2 were excluded in one family. The brachydactyly type A1 gene or locus was not found in either of the two families studied.

Congenital hand anomalies have an estimated prevalence at birth of approximately 5/1000.1 One type of congenital hand anomaly is brachydactyly which Bell classified into seven types: A1, A2, A3, B, C, D, and E.2 In the type A brachydactylies, variable abnormalities of the middle phalanges are observed. Type A1 brachydactyly (Farabee type, MIM 112500) is an autosomal dominant condition2 for which Bell’s criteria are: shortening of the middle phalanx of all digits (both hands and feet), shortening of the proximal phalanges of the first digit, and occasional fusion between the middle and terminal phalanges. Variable expressivity is common.

Two classes of homeobox genes have been implicated in the control of distal limb development, namely some of the HOXD and HOXA genes (previously called HOX4 and HOX1)3-5 as well as the MSX1 and MSX2 genes (previously called HOX7 and HOX8, although these genes do not structurally belong to the Hox gene family).5 Hox genes are a family of genes which are clustered in four complexes (HOXA, B, C, D) and encode positional information along the anterior-posterior body axis and the limb axes.5,6 These genes have been conserved in evolution from invertebrates to humans.6,9,10 A loss of function mutation of the murine Hoxd-13 gene through gene targeting resulted in mice with tetramelic skeletal abnormalities.11 The defects, which were restricted to the distal extremities of the limbs (the forefoot and hindfeet), included the reduction or absence of some skeletal elements as well as skeletal fusions. Muscles, tendons, and skin were apparently not affected. In these respects, the defects found in the murine Hoxd-13 mutation are similar to those found in human type A1 brachydactyly.

Another group of candidate genes are certain growth factor genes which are specifically expressed during limb development and can have stimulatory or inhibitory effects on limb growth and patterning.12-15 Growth factor genes have also been shown to influence Hox gene expression in vitro experiments.3 Growth factor genes of interest include: fibroblast growth factor (FGF)-1, -2, -4,12-15 transforming growth factor-alpha (TGF-α),16 platelet derived growth factor-alpha (PDGF-α),17 and platelet derived growth factor-beta (PDGF-β).18 Many of these genes have been cloned and polymorphisms described.

The purpose of this study was to evaluate candidate genes for type A1 brachydactyly in humans. The similarities between the human type A1 brachydactyly and the murine Hoxd-13 mutation11 suggest that the human disease may result from a mutation in the HOXD complex. We therefore analysed the HOXD locus as well as the MSX1 and MSX2 genes by sequencing gel electrophoresis for linkage to type A1 brachydactyly in two families containing a total of 11 affected persons (figure). We also evaluated growth factor genes FGF-1, FGF-2, PDGF-α, PDGF-β, and TGF-α by sequencing gel electrophoresis or Southern blotting.

Patients, materials, and methods
Two families diagnosed with type A1 brachydactyly were ascertained through a review of medical records at the Shriner’s Hospital for Crippled Children-Houston Unit and the University of Texas Houston Medical Genetics clinic. One family was of Scandinavian descent (five affected members) and the other of Mexican descent (six affected members). The institutional review boards at both institutions approved the protocol and written informed consent was obtained from both families.
Samples were overlaid with mineral oil and processed through 30 temperature cycles consisting of denaturation, annealing, and elongation (temperature cycles varied depending on the primer pair involved). Aliquots of amplified DNA were mixed with a stop solution containing formamide and electrophoresed on standard polyacrylamide sequencing gels. Gels were processed, dried, and exposed to autoradiography for 24 to 48 hours at room temperature. A standard M-13mp18 sequencing ladder was used to compare DNA banding sizes. Primer pairs from within HOXD, MSX1, MSX2, FGF-1, and PDGF-β were used in the experiments.

One candidate gene, TGF-α, contained a TaqI site detectable on an agarose gel stained with ethidium bromide after PCR amplification. A DNA molecular weight marker was used as a standard and specific fragments were identified.

Two candidate genes, FGF-2 and PDGF-α, contained restriction fragment length polymorphisms (RFLPs) located in introns. FGF-2 contains a HindIII site polymorphism. A pair of synthetic oligonucleotides, (TCAAGCTACACCTTCAAGCA) and (AGAAGCCAGTAACTTTCATC) were designed to amplify the second exon and used as a probe in the experiment. PDGF-α contains a Styl polymorphism which was detected by Southern blotting and probing with a 1.7 kb PDGF-α probe (clone IB657; ATCC number-86274).

Linkage analysis was performed using the MLINK program of the LINKAGE package (version 5.03). Lod scores between the disease and each marker locus were generated for each family and then summed over both families. The two families had the potential of generating a maximum total lod score of 3.01 of which family 1 contributed 2.107 and family 2 contributed 0.903. Markers within the various genes were studied for inclusion or exclusion as candidate genes; therefore, a lod score of -2 eliminated the gene as a candidate.

Results
The families analysed contained 11 persons affected with type A1 brachydactyly (figure). Two point lod scores between type A1 brachydactyly and the candidate genes are presented in the table. HOXD was informative in both families, and combined lod scores at θ = 0.05 were less than -2;0; however, family 2 was informative without any recombination yielding a lod score of -0.9. Lod scores in family 1 were negative. Therefore HOXD was eliminated as a candidate locus in family 1 but not in family 2. MSX1 was informative only in family 1 and was eliminated as a candidate gene with a lod score of -3.90 at θ=0.01. MSX2 was informative only in family 2 and was eliminated as a candidate gene with a lod score of -2.10 at θ=0.001. FGF-1 was informative in both families and excluded as a candidate gene with a lod score of -2.10 at a θ of 0.05. PDGF-2 was informative only in family 1 and was eliminated as a candidate gene with a lod score of -2.10 at θ=0.001. Other can-
Evaluation of candidate genes for brachydactyly

Lod scores and number of informative families for each locus. PDGF-α, PDGF-β, and TGF-α were uninformative in both families.

<table>
<thead>
<tr>
<th>Locus</th>
<th>Family No</th>
<th>Recombination fraction (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-00</td>
<td>0-01</td>
</tr>
<tr>
<td>HOXD</td>
<td>1 2</td>
<td>1 2</td>
</tr>
<tr>
<td>HOXMXS1</td>
<td>1 2</td>
<td>1 2</td>
</tr>
<tr>
<td>FG1-F</td>
<td>1 2</td>
<td>1 2</td>
</tr>
<tr>
<td>FG2-F</td>
<td>1 2</td>
<td>1 2</td>
</tr>
</tbody>
</table>

Lod scores are recorded in all cases where informative family number. When both families are informative, combined scores are calculated.

Discussion

DNA from members of two families (17 people) affected by brachydactyly type 1A was tested for linkage to eight candidate genes to determine whether one might be the gene responsible for the condition in these two families. While the number and size of the families were small, we had the capability either to include linkage with a maximum lod score of 3.01 as calculated by MLINK or exclude linkage with a lod score of < -2. With only two families, we were unable to detect genetic heterogeneity.

The homeobox genes and growth factor genes were among the most promising candidate genes available for the following reasons. Earlier studies on mutations in Drosophila and Xenopus embryos strongly suggested that members of the FGF and TGF families may provide signals required for the early establishment of the body plan. Some growth factors belonging to the same families are specifically expressed in the developing vertebrate limb and are able to interfere with limb growth and patterning under experimental conditions. Several HOXA, C, and D genes display specific temporal and spatial expression domains in developing limbs. Furthermore, a Hoxd-13 targeted mutation in the mouse showed a phenotype somewhat analogous to human brachydactyly type 1A. The MSX1 and MSX2 homeobox genes are believed to be involved in epidermal mesenchyme interactions which are critical for limb growth and patterning.

The brachydactyly type 1A gene was not found among the candidate genes tested. Overall, five loci (HOXD, MSX1, MSX2, FG1-F, and FG2-F) were excluded in either one or both families. Candidacy of HOXD remains, however, equivocal as it was weakly linked in one family but not the other. Future objectives are to ascertain additional families and to test these and other candidate genes.

Future areas of study include the evaluation of additional Hox genes, such as those belonging to the HOXA and HOXC complexes, in brachydactyly type 1A patients or in other human congenital limb abnormalities. Recent investigations have shown that a member of the TGF-β superfamily (the Gdf-3 gene) is responsible for the mouse brachydypsis mutation, whose phenotype is a reduction in the length and number of the long bones of the limb. In addition, the fibroblast growth factor-4 protein (FGF-4) has been shown to stimulate proliferation of cells in distal limb mesenchyme and cell line outgrowth, while the bone morphogenetic protein-2 (BMP-2) can counteract this growth promoting effect. Very recently, the FGF-8 gene was also shown to be specifically expressed in developing limbs. All of these genes represent additional candidates to investigate. The endeavour to find candidate genes should help unravel the link between altered gene regulation and the perturbation of a developmental process such as limb patterning.

We wish to thank Jacqueline T Hecht, PhD and Jonathan D Stein, BS for supplying several primers used in this project. We also wish to thank the families involved in the study for their participation and the Shriners Hospital for Crippled Children, Houston Unit.

20. Weber JL, May PE. Abundant class of human DNA poly-
morphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 1989;44:388-96.

32 Crossley PH, Martin GR. The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 1995;121:439-51.
Evaluation of candidate genes for familial brachydactyly.

J M Mastrobattista, P Dollé, S H Blanton and H Northrup

doi: 10.1136/jmg.32.11.851

Updated information and services can be found at:
http://jmg.bmj.com/content/32/11/851

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/