Familial partial trisomy 8p without dysmorphic features and only mild mental retardation


Abstract
We report on a mother and her two sons who had a direct duplication of chromosome region 8p22–8p23.1 without dysmorphic features and only mild mental retardation. The patients have been studied using G-banding, chromosome painting, and FISH using cosmid probes specific for the region 8p23.1–8pter. Comparison of the phenotypes of our patients and of published patients with an inversion duplication of the short arm of chromosome 8 indicates that trisomy for chromosome band 8p21 causes the more severe clinical picture in the latter.


Duplication of the short arm of chromosome 8, in which chromosome region 8p11.1 to 8p23 is involved, is associated with characteristic clinical manifestations. Up to now 47 patients have been published with an inversion duplication 8p-11-10 with a distal breakpoint in 8p22 (19 cases) or in 8p23 (28 cases) and a proximal breakpoint in 8p11.2 (11 cases), 8p12 (22 cases), or 8p21 (14 cases), as well as three patients with a tandem duplication 8p19 with breakpoints in 8p22 and 8p23.1 or 8p21.3 and 8p22 (table 1). In 19 of the 47 patients with an inversion duplication 8p, a deletion of (part of) 8p23 has been proved with molecular techniques. In the present study we report on three new patients with direct duplication 8p and no apparent deletion and compare their clinical features with the previously reported cases, who definitely have more severe clinical features. A chromosome 8 specific paint was used to visualise the normal and aberrant chromosome 8 and probes specific for chromosome region 8p23.1–8pter were used to determine the origin of the extra material on the short arm of chromosome 8.

Materials and methods
CASE REPORTS
Patient 1 is the proband of the family. He was born at term as the second child of non-consanguineous parents. Pregnancy and delivery were uncomplicated. Birth weight was 4000 g (97th centile). His motor development was delayed. He walked independently at the age of 2½ years and speech development was also retarded. Psychological evaluation at the age of 3 years showed an IQ of 70 (Sturtsman scale). At evaluation at the age of 5 years he presented as a healthy boy with growth parameters within normal limits. He showed no phenotypic anomalies and attended a school for mildly retarded children.

Patient 2 is the older brother of patient 1. He was born at term, after an uneventful pregnancy and delivery. Birth weight was 2800 g (10th–25th centile). In the first year development was normal, but delay started at the age of 2 years, requiring special education. Now at the age of 8 years he is a cooperative boy with normal social skills. No psychological test data are available. His motor and mental level is similar to that of his younger brother. On physical examination he shows no anomalies, particularly no facial dysmorphism.

Patient 3 is the healthy mother of patients 1 and 2. She had regular education and worked as a saleswoman before her marriage. On physical examination she shows slight hypotelorism (ICD 3-8 cm) and mild proptosis of the eyes, but no further facial dysmorphic signs. She is the only child of healthy parents of normal intelligence. Her husband had special education and now works in sheltered employment. Two brothers out of his seven sibs and two of their sons are of borderline normal intelligence.

CYTOGENETICS
Chromosomes were prepared from peripheral blood lymphocyte cultures, using a modification of the synchronisation method of Dutrillaux and Viegas-Pequignot,21 by treatment overnight with thymidine, followed by incubation with 5-BrdU for six hours and ethidium bromide for 1–5 hours before harvesting. High resolution banding was performed by treatment with trypsin followed by staining with Giemsa to obtain a GTG banded pattern. No cell line is available.

Table 1 Cytogenetic findings in published cases with inversion or direct duplication 8p

<table>
<thead>
<tr>
<th>Duplicated segment</th>
<th>Patients</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>8p11–8p22 (inv dup)</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>8p11–8p23 (inv dup)</td>
<td>9</td>
<td>2, 3, 7, 17, 18</td>
</tr>
<tr>
<td>8p12–8p22 (inv dup)</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>8p12–8p23 (inv dup)</td>
<td>13</td>
<td>2, 4, 6, 11, 12, 15, 16, 18</td>
</tr>
<tr>
<td>8p21–8p22 (inv dup)</td>
<td>8</td>
<td>9, 10, 13, 14, 15, 18</td>
</tr>
<tr>
<td>8p21–8p23 (inv dup)</td>
<td>6</td>
<td>2, 4, 8</td>
</tr>
<tr>
<td>8p21.3–8p22 or</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>8p22–8p23.1</td>
<td>3</td>
<td>Present study</td>
</tr>
</tbody>
</table>

PROBES, FISH, AND CHROMOSOME PAINTING
Probe pJM128 (D8Z2) is specific for the cen-
Familial partial trisomy 8p without dysmorphic features and only mild mental retardation

Figure 1 Partial karyotype representing a normal chromosome 8 (left) and a duplication chromosome 8p (right), a prometaphase GTG banded normal chromosome 8 and a chromosome 8 with duplication in the short arm.

Discussion
In most cases, GTG banded high quality chromosome preparations produce a banding pattern sufficient for chromosome identification. In the present study, cytogenetic band as-

Results
Analysis of high resolution prometaphase chromosomes showed additional material on the short arm of one of the chromosomes 8 of all three patients. The mother of patient 3 had normal chromosomes and her father had died. A chromosome 8 specific paint appeared to hybridise to the structurally normal chromosome 8 as well as to all parts of the aberrant chromosome 8. Despite using high resolution GTG banding, it was difficult to detect in the banding pattern whether we were dealing with a direct duplication or with an inverted duplication (fig 1). Cohybridisation of a centromere specific probe and cosmid probes specific for chromosome region 8p23.1–8pter to metaphases of the three patients showed fluorescent spots at the centromere and at the end of the short arm of the normal chromosome 8. The abnormal chromosome 8 showed a fluorescent centromere spot and two signals at the end of the short arm with all three probes. The results of FISH with the cosmid probe 59C1 on a metaphase of case 1 is shown in fig 2.

Figure 2 Metaphase chromosomes of patient 1 after in situ hybridisation with the centromere probe pJM128 and probe 59C1 specific for region 8p23.1–8pter. Normal chromosome 8(left) with a single spot on the short arm and aberrant chromosome 8(right) with double spots on the short arm.
The results of FISH with probes lying within the duplication would produce definitive evidence for direct or inverted duplication.

To date, 50 patients with partial duplication 8p have been reported (table 1). Sufficient clinical data on 38 of them exist (one patient reported by Mitchell et al.16 one by Barber et al.17 33 patients reviewed by de Die-Smulders et al.18 and three patients described by Dhooge et al.19). Table 2 lists the clinical data of the present cases and the three cases of Dhooge et al.19 together with the clinical features of 35 patients with inversion duplication 8p. The clinical picture of the patients with an inversion duplication 8p comprises hypotonia and neonatal feeding problems, profound mental retardation, structural brain abnormalities, facial anomalies including a large mouth with a thin upper lip, a high arched palate, a broad nasal bridge, an abnormal maxilla or mandible, and malformed, low set ears. Various orthopaedic problems are also often reported. As inversion duplications in 8p coexist with terminal deletions,13-17 an effect on the phenotype might be expected. However, as reported earlier,15 patients in whom the abnormality is restricted to a deletion of 8p23–8pter are only mildly mentally retarded and have a normal phenotype20 or minimal dysmorphic features.21-25

The clinical picture of the three patients described by Dhooge et al.19 is characterised by small stature, facial dysmorphism, and mild mental retardation. In contrast to the patients with inversion duplication 8p, the clinical picture of the present patients is very mild. They show no dysmorphism and have no congenital anomalies.

The shortest region of overlap in patients with 8p duplication listed in table 1 is 8p21.1–8p22. As our patients (and possibly also those of Dhooge et al.) are only trisomic for chromosome region 8p22–8p23.1, the critical chromosome region determining the clinical picture in inversion duplication 8p would be 8p21.1–8p21.3.

Several mechanisms have been proposed to explain the origin of inversion duplications and direct duplications leading to partial trisomy 8p. Weleber et al. proposed a U type exchange causing an end to end fusion of the short arms of chromosome 8, subsequently leading to the formation of an inversion duplication with loss of chromosomal material distal to the initial breakpoint. With DNA studies and FISH this terminal deletion has been illustrated.113-120 A second mechanism that gives rise to an inversion duplication has been suggested by Mitchell et al.50 Two abnormal events (paracentric inversion and subsequent U type exchange) would result in a chromosome with an inverted and duplicated region and a deleted region but with normal telomeres. Patient EM of Feldman et al. would fit this mechanism. To explain the formation of a direct duplication three possibilities are proposed.51 A direct duplication could originate in a meiotic cell by unequal crossing over between chromatids, by a two break reciprocal translocation between homologues, or by a three break insertion between sister or non-sister chromatids.

The chromosomal and clinical data reported in patients with duplications in 8p lead to the conclusion that involvement of band 8p21 in the duplication is of major importance, because the triplicate state of this region contributes to the severe clinical picture and profound psychomotor retardation. For this reason in situ hybridisation techniques should be used to identify accurately the chromosomal contents of an 8p duplication.

The authors thank Stephen Wood, Department of Medical Genetics, University of British Columbia, Canada for kindly providing us with the probes 95C1, 83D9, and 16E12. We thank Francis van der Lubbe for skilful photographic work.

12 Nevin NC, Morrison PJ, Jones J, MacC Reid M. Inverted
Familial partial trisomy 8p without dysmorphic features and only mild mental retardation


Familial partial trisomy 8p without dysmorphic features and only mild mental retardation


J Med Genet 1995 32: 792-795
doi: 10.1136/jmg.32.10.792

Updated information and services can be found at:
http://jmg.bmj.com/content/32/10/792

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/