Detection of maternal cell contamination in amniotic fluid cell cultures using fluorescent labelled microsatellites

Geoffrey W Smith, Colin A Graham, Jean Nevin, Norman C Nevin

Abstract
A rapid PCR based assay was used to ascertain the presence of maternal cell contamination (MCC) in amniotic fluid cell cultures and to exclude MCC in cases where cytogenetic analysis was possible only from one primary cell culture. Six 6-carboxyfluorescein (FAM) and three 6-carboxyfluorescein hexachloride (HEX) labelled primer sets were used to amplify two tetra- and seven dinucleotide repeat polymorphisms. The PCR amplifications were multiplexed in (three) three primer set reactions and visualised on an Applied Biosystems 373A sequencer running Genescan 672 software. The microsatellite products obtained from 200 amniotic fluid cell cultures where the karyotype was female were compared against corresponding maternal blood PCR products. A single case of MCC was detected indicating the usefulness of such assays. We suggest that screening for MCC should be considered in instances where the amniotic fluid sample is bloodstained or was obtained with difficulty, or where the karyotype is female and chromosome analysis is not possible from more than one primary cell culture.

Microsatellites are highly polymorphic DNA markers which display a variable number of easily identifiable alleles based on very short (2–4 bp) tandem repeats.1–3 These markers occur every 300 to 500 kb on the human X chromosome and appear to be dispersed at this frequency (an estimated 400 million loci in total) throughout the genome.4,5 Their abundance has revolutionised the construction of high resolution linkage maps for each chromosome, which may be used to map disease and non-disease genes.6–8 In addition microsatellites also offer unlimited potential for highly discriminatory tests for human identification and their use in the field of forensic science and for paternity testing is well documented.11–14 The explosion in microsatellite applications has been rapidly followed by the development of fluorescence based systems for the semi-automated analysis of PCR generated DNA fragments.15 These systems offer numerous advantages over conventional methods including automated real time analysis as the alleles pass a detection window, coupled with the ability to run hundreds of samples on a single gel multiplexed either by coamplification or by colelectrophoresis based on dye colour or PCR product length. Furthermore, the use of an internal lane standard allows accurate allele sizing and quantitation, so removing the problem of band shift artefacts and between gel variation often encountered with other techniques. In addition the need for radioisotopes and time consuming postelectrophoresis handling steps (such as blotting/autoradiography and silver staining) are eliminated. Here we describe the application of fluorescent microsatellite analysis to the problem of maternal cell contamination in amniotic fluid cell cultures.

The majority of errors in the cytogenetic analysis of cultured amniotic fluid cells are the result of contamination of the cultures with cells of maternal origin. This poses a serious potential source of prenatal misdiagnosis and there have been at least four documented cases of aneuploidy being missed.16 The data from four large collaborative surveys suggest a mean MCC frequency of 0.25%.17–20 However, as the criterion for assigning MCC was the admixture of male and female cells, the true frequency allowing for undetected cases (where the fetal karyotype was female) is likely to be approximately twice the observed figure. Benn and Hsu17 showed considerable variability among individual laboratories. For institutions reporting more than 1000 amniocenteses, observed frequencies varied from 0% to 0.543%. As previously indicated these values are approximately half the true incidences owing to non-recognition of MCC when the fetal karyotype is female. In addition, the proportion of maternal cells was shown to be highly variable, consisting of a single XX cell in 25% of cases, multiple XX cells restricted to a single flank in 53.8% of cases, and 21.2% of cases which showed multiple XX cells in two or more primary cultures. This observation led to the proposal that cytogenetic analysis should be performed on a minimum of 20 metaphases from two or more independent primary cultures. Nevertheless the potential for error remains for the prenatal diagnosis of biochemical or genetic disorders (such as leucodystrophy and cystic fibrosis), where the properties of an entire cell population are determined. In this paper we describe the semiautomated detection of three fluorescent triplex PCR systems: D8S88 coamplifying with FXIII and vWF; D7S528 coamplifying with D1S250 and

Department of Medical Genetics, Belfast City Hospital, Belfast BT9 7AB, Northern Ireland
G W Smith
C A Graham
J Nevin
N C Nevin

Correspondence to: Dr Smith.

Received 23 May 1994.
Revised version accepted for publication 19 July 1994.
Materials and methods

AMNIOTIC FLUID CELL CULTURES AND DNA EXTRACTION

Amniotic fluid cell cultures were established in 25 cm² flasks in accordance with routine methods. The flask cells were washed with PBS and DNA was extracted by ethanol precipitation following guanidine and protease treatment as previously described. A small scale DNA extraction was performed on 300 µl maternal blood following a similar method.

MULTIPLEX PCR AMPLIFICATION

The microsatellite loci used to screen for MCC are described in table 1. Primers were synthesised and 5’ end labelled on an Applied Biosystems model 391 DNA synthesiser using either FAM or HEX phosphoramidites. The three triplex PCR reactions each contained 1·5 mmol/l MgCl₂, 200 mmol/l dNTPs, and 2% formamide. For D21S167, APOC2, and FXIII 8 pmol of each oligonucleotide primer was used, while for all other loci 5 pmol was found to be optimal. Following an initial denaturation at 94°C for five minutes, each multiplex reaction was amplified over 35 cycles of 94°C for one minute, 55°C for one minute, and 72°C for one minute followed by a final extension step at 72°C for five minutes.

FLUORESCENT PRODUCT DETECTION

Amplified PCR products were resolved on an Applied Biosystems 373A sequencer running Genescan 672 software as follows: 1 µl PCR product was mixed with 2·5 µl deionised formamide and added to 1·5 µl loading buffer containing 4 fmol of a 5FAM digest of phage lambda DNA labelled with the fluorescent dye 6-carboxyfluorescein (ROX) (Applied Biosystems). The loading mix was then heated to 90°C for two minutes before loading on a 6% sequagel (National Diagnostics) polyacrylamide gel and electrophoresed at 1500 V for five to six hours. Allele sizes were determined automatically by the Genescan 672 software using the second order least squares method which produces a sizing curve based on multiple linear regression through the ROX labelled fragments of the internal standard for each lane.

Results and discussion

DNA extracted from 200 amniotic fluid cell cultures was initially screened against the corresponding maternal blood samples using the FXIII/vWF/D8S88 triplex PCR, as the tetranucleotide repeats were the simplest to score...
Figure 2 Electrophorogram displaying the multilocus genotype generated from an amniotic fluid cell culture and the corresponding maternal blood. Identical genotypes at all nine loci indicate maternal cell contamination.

Table 2 Alleles in common between the amniotic fluid cell cultures and the maternal blood for the probable case of MCC

<table>
<thead>
<tr>
<th>Locus</th>
<th>Alleles (bp)</th>
<th>Frequency*</th>
<th>p†</th>
</tr>
</thead>
<tbody>
<tr>
<td>FXIII</td>
<td>190, 194</td>
<td>0.36, 0.35</td>
<td>0.355</td>
</tr>
<tr>
<td>vWF</td>
<td>167, 167</td>
<td>0.42, 0.42</td>
<td>0.420</td>
</tr>
<tr>
<td>D8S88</td>
<td>87, 89</td>
<td>0.34, 0.21</td>
<td>0.275</td>
</tr>
<tr>
<td>D1S167</td>
<td>152, 155</td>
<td>0.05, 0.32</td>
<td>0.295</td>
</tr>
<tr>
<td>D1S250</td>
<td>136, 140</td>
<td>0.24, 0.18</td>
<td>0.210</td>
</tr>
<tr>
<td>D7S528</td>
<td>0.31, 0.31</td>
<td>0.01, 0.31</td>
<td>0.310</td>
</tr>
<tr>
<td>APOC2</td>
<td>147, 149</td>
<td>0.01, 0.23</td>
<td>0.120</td>
</tr>
<tr>
<td>D18S35</td>
<td>104, 106</td>
<td>0.40, 0.11</td>
<td>0.255</td>
</tr>
<tr>
<td>D10S109</td>
<td>86, 90</td>
<td>0.30, 0.15</td>
<td>0.225</td>
</tr>
</tbody>
</table>

Multilocus probability = 5.4 × 10⁻⁸.
* Allele frequencies were estimated from 100 chromosomes of unrelated persons in the Northern Ireland population.
† Probability of mother and fetus having the same genotype at each locus.

one case. When this case was investigated using the two remaining triplex PCRs (D7S528/D1S250/D21S167 and D10S109/D18S35/APOC2), the DNA extracted from the flask cells and a further maternal blood sample again showed identical genotypes at all microsatellite loci (fig 2). Although paternal blood was unavailable, an estimate of the probability of mother and fetus having the same genotype at all nine loci can be obtained by considering the likelihood that the father has transmitted one or other of the shared alleles for each locus. This can be expressed as (p+q)/2 for a single locus where p and q are the frequencies of the shared alleles. The multilocus probability is obtained as the product of the single locus probabilities (table 2). In this instance the likelihood that mother and fetus have the same genotype at all nine loci is calculated to be 5.4 × 10⁻⁸, and the more probable explanation is that there was maternal cell contamination. This pregnancy was referred at 34 weeks' gestation with moderate ascites and hydrothorax, and a diagnosis of non-immune hydrops. The amniocentesis was unremarkable, with no obvious bloodstaining. Thus the circumstances of the amniocentesis is no indication of the presence of maternal cells and tests should be performed on any amniotic fluid cell culture where the karyotype is female and only one primary cell culture has been established. In no cases were three alleles observed in the amniotic fluid cell cultures indicating that MCC is probably a clonal event, that is, a small population of maternal cells undergoes clonal expansion to the extent that it almost becomes the exclusive cell population.

We now routinely check amniotic fluid cell cultures against the maternal blood when DNA testing for cystic fibrosis and other single gene disorders, and in all instances where the karyotype of the cultured cells is female and where cytogenetic analysis from two or more cultures is not possible.

Detection of maternal cell contamination in amniotic fluid cell cultures using fluorescent labelled microsatellites.

G W Smith, C A Graham, J Nevin and N C Nevin

J Med Genet 1995 32: 61-64
doi: 10.1136/jmg.32.1.61

Updated information and services can be found at:
http://jmg.bmj.com/content/32/1/61

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/