Chemiluminescent detection of blotted PCR products (CB-PCR) of two CAG dynamic mutations (Huntington’s disease and spinocerebellar ataxia type 1)

Sergi Castellvi-Bel, Toni Matilla, Maria Isabel Banchs, Helena Kruyer, Jordi Corral, Montserrat Milà, Xavier Estivill

Abstract
We have used a non-isotopic PCR assay based on the chemiluminescent detection of blotted PCR products (CB-PCR) for two dynamic mutation diseases (Huntington’s disease and spinocerebellar ataxia type 1). This gives an accurate sizing of alleles and permits a rapid analysis of at risk persons. The system involves PCR of the samples, separation of alleles on polyacrylamide gels, Southern blotting, and hybridisation with specific primers 3’ labelled with fluorescein (FITC)-dUTP as probes. CB-PCR retains the isotopic sensitivity for accurate allele determination, avoids isotopic manipulation, and provides the advantages of safety, long term storage of probes, and recycling of hybridisation solutions.

Trinucleotide repeat sequences have become one of the more striking discoveries in human molecular genetics of the last two years. This kind of sequence has so far been implicated in six neurological diseases: myotonic dystrophy, fragile X syndrome, spinobulbar muscular atrophy, Huntington’s disease, spinocerebellar ataxia type 1, and FRAXE mental retardation. Such peculiar stretches of repeated nucleotides have been considered to be dynamic mutations since they show instability of alleles through generations and the mutation rate is related to the copy number of repeats. Therefore, the mutability of one of these sequences in offspring is different from that in their parents. We have applied a non-isotopic PCR assay based on the chemiluminescent detection of blotted PCR products (CB-PCR) for two of these diseases (Huntington’s disease (HD) and spinocerebellar ataxia type 1 (SCA1)), which gives an accurate sizing of alleles and permits a rapid analysis of at risk persons. The system involves PCR of the samples, separation of alleles on polyacrylamide gels, Southern blotting, and hybridisation with specific primers 3’ labelled with fluorescein (FITC)-dUTP as probes.

Isolation of genomic DNA and PCR reac-
Chemiluminescent detection of blotted PCR products (CB-PCR) of two CAG dynamic mutations

Figure 1. Chemiluminescent blotting PCR (CB-PCR) analysis of the CAG repeat at the HD locus. The analysis was on a 5% denaturing polyacrylamide gel in eight controls (lanes 1, 3, 7, 10, 11, 12, 14, and 15) and eight HD patients (lanes 2, 4, 5, 6, 8, 13, 16, and 17). There is a clear cut difference between normal and mutated alleles. The allele sizes are given in number of CAG repeats. Lane 9 is the negative control.

Figure 2. CB-PCR analysis of the CAG repeat at the SCA1 locus. The study was on a 5% denaturing polyacrylamide gel in four controls (lanes 3, 5, 6, and 7) and eight SCA1 patients (lanes 1, 2, 4, 8, 9, 11, 12, and 13). The allele sizes are given in number of CAG repeats. Lane 10 is the negative control.

obtaining the exact number of repeats in both the normal and affected range. However, in cases of extreme trinucleotide expansion, PCR may amplify the region with a lower efficiency. We have tried to solve this problem by using 7-deaza-dGTP instead of dGTP (1:4, dGTP-7-deaza-dGTP), as successful amplification of large alleles was found to be dependent upon this.10 When 7-deaza-dGTP was used, we achieved a better amplification of large alleles than when it was not. Poor specificity is another problem when amplification takes place in such segments. DMSO is frequently used to enhance the amplification of large repeats (for example, for the CGG repeat of FMRI-11), although it seems to decrease the Taq polymerase activity and it was found to be only partially effective.12 Formamide has been found to be a better alternative,13 and this has also been confirmed in this report.

Radioactive analysis of trinucleotide repeats requires special facilities and handling, limiting its use to laboratories with isotopic facilities. Although non-radioactive PCR amplification of the CAG repeats in HD has previously been described,14 the method does not give the size accuracy obtained by radioactive methods.18 CB-PCR retains the isotopic sensitivity for accurate allele determination, avoids isotopic manipulation, and provides the advantages of safety, long term storage of probes, and recycling of hybridisation solutions.

The authors would like to thank A. Sánchez and D. Genis for sending us families for analysis, A. Barceló for primer synthesis, M. Villa and L. Jiménez for DNA isolation, and M. Lynch for help with the manuscript. This work was partially supported by the Fondo de Investigaciones Sanitarias de la Seguridad Social (93/0004) of Spain and the Institut Català de la Salut (Generalitat de Catalunya).

Chemiluminescent detection of blotted PCR products (CB-PCR) of two CAG dynamic mutations (Huntington's disease and spinocerebellar ataxia type 1).

S Castellvi-Bel, T Matilla, M I Banchs, H Kruyer, J Corral, M Milà and X Estivill

J Med Genet 1994 31: 654-655
doi: 10.1136/jmg.31.8.654

Updated information and services can be found at: http://jmg.bmj.com/content/31/8/654

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/