Wadey et al, Burn et al, Holder et al, and Wilson et al devote considerable attention to the overlap of a number of conditions, including velocardiofacial syndrome, DiGeorge sequence, and conotruncal anomaly face syndrome. These authors do not mention other conditions which also affect patients with overlapping phenotypes, including those by Strong and Seldjalkov. As we pointed out in our earlier article [1], the appearance of a syndrome with autosomal dominant inheritance of heart anomalies clearly had velocardiofacial syndrome. In Sedjalkov's series of cases, many, but not all, of the cases shown had phenotypic features consistent with velocardiofacial syndrome. Reviews of photographs shown in other articles also show the classic phenotype of velocardiofacial syndrome, such as cases shown in Kaplan's description of occult submucous cleft palate. What all of these cases help to illustrate is the familiar parable of the five blind men and the elephant. Many clinicians who have been focused on DiGeorge anomaly have described from a variety of perspectives what may be a single class of patients. If one believes that heart anomalies are the primary defect, DiGeorge syndrome may be considered a phenotypic mosaic of primary significance, whereas if one studies children with craniofacial anomalies, velocardiofacial syndrome may be of prominence. The problem related to normality is the absence of rigorous standards for clinical description and diagnosis. Often, those who focus attention on cardiac or immunological disorders might do so at the expense of other anomalies, such as speech disorders, minor limb anomalies, or eye findings. In our series of patients with velocardiofacial syndrome, we have attempted to be as rigorous as possible in describing all of the clinical manifestations in our patients. This is, in part, an outgrowth of the interdisciplinary nature of this Center (and others like it) which calls on 26 disciplines in the evaluation process. It was obvious to us long ago that a number of genetically non-specific disorders such as Robin, DiGeorge, and CHARGE occurred as secondary sequences to velocardiofacial syndrome.1-12 Included in the over 40 clinical conditions to be associated with velocardiofacial syndrome are findings consistent with Robin, DiGeorge, and CHARGE, as well as other more obscure discrete anomalies. It is the so-called Seldjalkov syndrome. As pointed out by Stevens et al, there is little doubt that the familial cases of DiGeorge which have been reported actually represent velocardiofacial syndrome.

The importance of accurate clinical description and diagnostic identification of velocardiofacial syndrome (or any other disorder, for that matter) is clearly illustrated by the article of Driscoll et al. They report a prevalence of 76% 22q11 deletions in patients referred to them as velocardiofacial syndrome. In other words, the diagnosis was applied by several different clinicians without ascertaining the validity or reliability of the clinical diagnostic technique used to reach that conclusion. Therefore, this prevalence statistic is essentially meaningless. Rigorous discrimination demands accuracy of scientific observations, and without proper assessments of that accuracy the observations can not be accepted as true. It should be mentioned from our own series that in molecular analysis to Dr Scambler's laboratory, there was a 100% prevalence of 22q11 deletion.13 It should also be mentioned that not all of those cases had heart anomalies, and few met the diagnostic criteria of DiGeorge. In another series analysed by Dr Driscoll's laboratory, all of the cases successfully analysed were deleted14 except for one who had not been examined in early infancy.15 In 1987, on subsequent clinical examination at the age of 6 years in 1993, it became obvious that this patient did not have velocardiofacial syndrome. In fact, it was the coincidence of Robin sequence and a very mesoskeletal defect in this case which led to the diagnosis in the neonatal period. With growth and time, it became obvious that we were incorrect in our earlier diagnosis. Additional cardiac evaluation after the diagnosis showed anomalies not consistent with velocardiofacial syndrome. Therefore, in our experience, clinical application of the diagnosis of velocardiofacial syndrome by careful analysis (preferably longitudinal) of clinical phenotype has led to a 100% accurate detection of a 22q11 microdeletion in all cases. The 83% prevalence of DiGeorge cases deleted at 22q11 as reported by Driscoll et al may reflect the aetiological heterogeneity of DiGeorge syndrome. The criteria for DiGeorge syndrome are more clearly more refined than the exponential phenotype of velocardiofacial syndrome so that the diagnostic label is more easily attached. Even so, 17% of Driscoll's DiGeorge's cases do not detect 22q11. It may be that the 83% prevalence of deletions denote that the majority of DiGeorge cases actually are caused by the deletion specific to velocardiofacial syndrome. Stated another way, the 17% of DiGeorge cases not deleted may be related to some of the other known chromosomal sites to which DiGeorge has been linked (such as 4q, 10p, and 17p, among others) whereas, to date, velocardiofacial syndrome has been isolated only to 22q11. Finally, Dr Hall's support of the new acronym CATCH 22 only serves to confuse the clinical and diagnostic picture further. Dr Hall states Driscoll's prevalence data as if to indicate that velocardiofacial syndrome is aetiologically heterogeneous. She states that..... 68% of our Syndrome patients.... have been recognised to have deletions of 22q11. This statement is not true. It should more accurately be stated that 68% of patients sent to Driscoll's laboratory identified by other clinicians as having velocardiofacial syndrome were deleted. In our sample, 100% were deleted. Is this a difference in clinical experience, expertise, criteria, or all of the above? There is simply no valid evidence to suggest that velocardiofacial syndrome is aetiologically heterogeneous. The DiGeorge anomaly is known to be so, as is CHARGE. Therefore, placing velocardiofacial syndrome, DiGeorge syndrome, and CHARGE under a single diagnostic category is an example of what is used to be referred to as "jumping", which will only confuse clinicians, molecular geneticists, and, most importantly, patients and their families. If the data reported in volumes 30 (pages 801-856) point out nothing else, it is that molecular geneticists are dependent on accurate clinical detection in order to prove primary aetiology.

ROBERT J SHPRINTZEN
Cerebro Craniofacial Disorders, Department of Neurology and Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.

Multiple origins of X chromosome tetrasomy

The extra chromosmes in all previously reported cases of X chromosome tetrasomy or pseudoaneuploidy have been identical in origin and compatible with the product of successive meiosis I and meiosis II nondisjunctions in the mother.1-4 This is inferred by the presence of early female meiotic maturation arrest in maternal alleles at all informative X loci, implying transmission of one or both chromosomes from both X chromosome pairs from the mother. In our investigation of the male pseudoaneuploid cases, molecular results for one 48,XXXX case were incompatible with a completely meiotic origin of the extra chromosomes. In another case with male pseudoaneuploidy, reports in that there was complete absence of any paternal alleles.
Letters to the Editor

425

Interpreting the evidence for an association between the retinoic acid receptor locus and non-syndromic cleft lip with or without cleft palate

Vintiner et al recently reported the results of a negative association study for non-syndromic cleft lip with or without cleft palate (CL ± P) and the PstI polymorphism at the retinoic acid receptor (RARA) locus, and concluded that their data failed to confirm the reported association between CL ± P and RARA in Australian subjects.1 Failure to reject the null hypothesis in these data does not, however, constitute evidence against an association of the magnitude detected in the Australian study.2 The best estimate of the odds ratio (OR) for the association of CL ± P and RARA in Australian subjects is 1.61 (table). The British data do not constitute evidence against such an association, since they provide relatively low power: 56% under a two sided alternative and 68% under a one sided alternative, to detect an odds ratio of this magnitude at α = 0.05. In fact, the direction of the association between the A2 allele and CL ± P is consistent across studies, and the 95% confidence interval obtained in the British data includes the point estimate based on the Australian data (table). Moreover, tests of heterogeneity for the RARA allele frequencies were non-significant in both cases (p = 0.28) and controls (p = 0.96). Relative to the Australian data, the combined data provide slightly stronger evidence (p = 0.012) for a somewhat weaker association (OR = 1.60, 95% CI 1.01–2.30) between CL ± P and the A2 allele of the RARA PstI polymorphism (table). Thus, while the British data are compatible with the null hypothesis, they are also consistent with the Australian data. Confirmation of an association between CL ± P and RARA, therefore, awaits replication in study populations with sufficient power to detect an odds ratio of at least 1.60.

LAURA E MITCHELL
Washington University School of Medicine,
Division of Biostatistics, Box 8067, 660 S Euclid Avenue,
St Louis, MO 63110, USA.

Distribution of RARA allele frequencies

<table>
<thead>
<tr>
<th>Chemex-Trench et al*</th>
<th>Vintiner et al†</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allele</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>A2</td>
<td>A1</td>
</tr>
<tr>
<td>CL ± P</td>
<td>46</td>
<td>172</td>
</tr>
<tr>
<td>Controls</td>
<td>49</td>
<td>101</td>
</tr>
</tbody>
</table>

X(p value) 0.013 0.013 0.013

OR (95%CI)†

1.60 (1.13–2.91) 1.74 (0.74–4.35) 1.60 (1.01–2.30)

*Excludes the single subject with an A3 allele.
† OR = b/a/(1−b)/(1−a) where b and c refer to the number of A1 alleles in cases (that is, CL ± P subjects) and controls, respectively, and b and d refer to the number of A2 alleles in cases and controls, respectively.

Hybridisation of M278 (DXS255) to TaqI digested DNA of 48,XXX cases 1 and 2. Case 1 shows one paternal and three copies of a single maternal allele. Case 2 shows equal dosage of the two maternal alleles, but no paternal allele (relatively more DNA from the mother was loaded in case 2).

Molecular analysis was performed as previously reported4 using the probes dic56 (DXS143), 113DXYS151, p602(DXYS17), pM278(DXYS295), D34 (DXYS151), and F814(DXS144E). None of the three 48,XXX cases showed any evidence of mosaicism among at least 20 metaphases examined. Parental karyotypes were not performed to exclude the presence of an XXX cell line in the mother; however, molecular analysis always showed two alleles of equal intensity at heterozygous loci in the mothers. A maternal origin of the extra chromosomes and heterozygosity for both maternal alleles at one or more loci was found in all cases. However, one 48,XXX case (XXXXX) showed inheritance of only a single maternal allele in three copies, plus one paternal allele, at DXS255 and DXYS151, which were the most centromeric on the p and q arms respectively (Xp11.22 and Xq21.3) of the markers examined here (figure). This same person case (1) showed two maternal alleles, one in double dose, at DXS143 and DXYS151, both mapping to Xq22.3 and for DXS144E (Xq28). A second 48,XXX case (XXXXX2) showed heterozygosity for maternal alleles (in equal dosage), but no paternal X allele was detected at DXYS17 or at DXS255 (figure). She therefore shows uniparental maternal tetrasomy for the X chromosome. Case 3 of the present study was similar to both previous reports of 48,XXX, 4 which is consistent with a single paternal allele and both maternal X alleles, one in double dose, were observed at all informative loci (data not shown).

Investigations of three 48,XXX cases (partial results of two have been published previously*) were similar to previous reports and showed that all four X chromosomes were maternal in origin with equal dosage of alleles at all heterozygous loci in the mother. These results support a mechanism of successive MI and MI meiotic non-disjunctions in the mother involving both chromatid pairs in MI. This may also explain the inheritance in case 2, which, in addition, must have had a pre- or postfertilisation loss of the paternal sex chromosome. Case 3 could have originated either from a tetrasomy X oocyte with postmeiotic loss of one maternal chromosome or from successive MI and MI non-disjunctions with involvement of only one of the X chromatid pairs in MII (resulting in transmission of three X chromosomes to the oocyte).15

Case 1 of the present study, however, is the only case which cannot be explained by meiotic non-disjunction alone, since three copies of a single maternal X allele were observed for some loci. Therefore, either an extra X chromosome was present in the mother’s germ cells before meiosis, or the zygote originated from a 47,XXX karyotype, with the third maternal X duplicated in the zygote or early postzygotically. In either case, both meiotic and mitotic non-disjunctions would contribute to the X chromosome tetrasomy. Thus, although most cases of X chromosome tetrasomy are compatible with the hypothesis of successive meiotic non-disjunction in the mother, other mechanisms may also occasionally be involved.

W P ROBINSON
F BINKERT
A A SCHINZEL
Institute for Medical Genetics, University of Zurich, Ramistrasse 74, CH-8091 Zurich, Switzerland.

S BASARAN
Prenatal Diagnosis and Research Centre, and Institute of Child Health, University of Istanbul, Istanbul, Turkey.

R MIKELSAAR
Institut of General and Molecular Pathology, Tartu University, Vene St 34, EE-24011 Estonia.

References

Downloaded from http://jmg.bmj.com/ on June 19, 2017 - Published by group.bmj.com
Multiple origins of X chromosome tetrasomy.

W P Robinson, F Binkert, A A Schinzel, S Basaran and R Mikelsaar

doi: 10.1136/jmg.31.5.424

Updated information and services can be found at:
http://jmg.bmj.com/content/31/5/424.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/