Molecular characterisation of type 1 Gaucher disease families and patients: intrafamilial heterogeneity at the clinical level

O Amaral, A M Fortuna, L Lacerda, R Pinto, M C Sa Miranda

Abstract
Type 1 Gaucher disease families were studied in an attempt to establish a phenotype/genotype correlation in affected persons and also to identify carriers accurately. In the Portuguese type 1 Gaucher patients, screening for mutations N370S, L444P, R463C, and 1066 + 1 G→A allowed the identification of 85% of the alleles among unrelated patients. A subclinical case with genotype N370S/1066 + 1 G→A was identified in one family in which there were three other symptomatic sibs. To our knowledge this is the first subclinical case with a genotype other than N370S/N370S. No genotype-phenotype correlation could be established and considerable clinical heterogeneity was found even among sibs with the same genotype. The data collected on the origins of the Gaucher families indicated two areas in northern Portugal where a higher frequency of the disease may be expected to exist.

(J Med Genet 1994;31:401-404)

Gaucher disease (GD) is the most prevalent lysosomal storage disorder. This autosomal recessive disease is caused by the defective catabolism of glucosylceramide usually owing to a deficiency of glucocerebrosidase (EC 3.2.1.45). Clinically, three major types can be distinguished on the basis of the presence and extent of neurological involvement. The most common form of GD is the heterogeneous non-neuronopathic type 1, which is particularly frequent among Ashkenazi Jews.

In Portugal, type 1 is also the most frequent form of GD. In a previous work we reported that in the Portuguese patients mutation N370S was the most common, accounting for about 60% of the Gaucher alleles. Our results contrast with reports on other GD patients of non-Jewish ancestry; studies on Canadian, British, and Italian patients showed that this mutation accounted for approximately 40% of the mutant alleles in type 1 patients. The main aim of the present work was to characterise GD families, attempting to establish a correlation between the patients' genotype and their clinical phenotype and to identify the carriers accurately. Information about the origins of the families was also collected in an attempt to trace the families as far back as possible and determine the geographical origins of the GD alleles in Portugal.

Materials and methods
PATIENTS AND RELATIVES
A total of 23 type 1 Gaucher disease patients and 95 blood relatives from 11 of the 17 Gaucher families were studied. All the people studied were white and of Catholic ancestry. No relationship could be detected between the different families.

Patients were subjected to clinical and analytical examination. They all presented low glucocerebrosidase activity in leucocytes. The clinical examinations were performed by the same physician (AMF), therefore assuring little variability in the clinical evaluation, and the degree of clinical severity established was based on previously proposed parameters. All patients were free of neurological complications.

SAMPLE PREPARATION
Genomic DNA (gDNA) of patients and close relatives was isolated from white blood cells by standard methods with minor modifications. Buccal wash samples, which proved to be very convenient to obtain, were used in the study of relatives. The buccal wash consisted of a sterile saline solution. PCR amplification was carried out using either 500 ng of gDNA or 10 μl of the cellular extract. The reactions were carried out in a total volume of 100 μl.

MUTATION ANALYSIS
The DNA of most patients and some relatives was initially studied by dot blot analysis of PCR products with ASO probes for the most common mutations. Patients with unidentified alleles were screened for a total of 19 mutations by specific restriction endonuclease digestion of PCR amplified products. The screening for recombinant alleles in patients with mutation L444P was also carried out by specific restriction enzyme digestion, using StyI and HphI, which allow the identification of pseudogene sequences at genomic nucleotides 5957 and 6306, respectively. Genomic nucleotide numbering is according to the sequence published by Horowitz et al.

In the characterisation of the families, relatives were screened for the mutations identified in the index cases.

Results
Of all the mutations tested in the patients, only four were encountered, namely N370S, L444P
Genotype and clinical severity scores of type 1 GD patients. Patients within families are all sibs. Severity scores calculated according to Zimran et al.†

Clinical and analytical characteristics of patients from three unrelated families

<table>
<thead>
<tr>
<th>Family</th>
<th>Patient</th>
<th>Onset (y)</th>
<th>Cytopenia</th>
<th>Splenomegaly</th>
<th>Hepatomegaly</th>
<th>Bone involvement</th>
<th>Other organ involvement†</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>P1</td>
<td>7</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>F1</td>
<td>P2</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>F1</td>
<td>P3</td>
<td>29</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>F6</td>
<td>P8</td>
<td>3</td>
<td>+</td>
<td>+ + +</td>
<td>+ +</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>F6</td>
<td>P9</td>
<td>6</td>
<td>+</td>
<td>+</td>
<td>+ +</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>F12</td>
<td>P15</td>
<td>3</td>
<td>+</td>
<td>s</td>
<td>+ +</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>F12</td>
<td>P16</td>
<td>12</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>F12</td>
<td>P17</td>
<td>32</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F12</td>
<td>P18</td>
<td>28</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* = not detectable, + mild, ++ moderate, +++ massive, s splenectomised.
† Other organ involvement refers to kidneys and lungs.
‡ Subclinical cases presenting glucocerebrosidase deficiency in leucocytes.
her forties (P12). It is worth noting that both patients had been splenectomised. In the case of patients 19 to 23 only one of the alleles was identified by testing all the 19 previously mentioned mutations.

Among the 95 blood relatives examined (including 37 obligate carriers) two subclinical cases and 72 carriers were identified; 55 carried mutation N370S, six carried mutation 1066+1 G→A, five carried mutation L444P, and six were obligate carriers for undefined mutations. In two of the families examined (F6 and F10) two persons were found to be N370S carriers even though they had not contributed to the patients' genotype. In one case the carrier was a non-consanguineous sister in law and in the other case it was a grandmother who had transmitted the normal allele to the patient's father.

The establishment of parental origins showed that 62.5% of 32 parents originated from two geographical areas in northern Portugal, which comprise a population of 0.5 million. The remaining 37.5% were scattered throughout the country (including the Azores islands). No interfamilial relationships were detected; however, detailed genealogy was unavailable earlier than the third generation.

Discussion

In the Portuguese patients, the proportions of Gaucher alleles were found to differ from those previously described in non-Ashkenazi patients. Identification of 85% of the Gaucher alleles among unrelated patients was possible by screening for mutations N370S (59%), L444P including recombinant alleles (17.5%), R465C (5.9%), and 1066+1 G→A (2.9%).

The severity score applied, although useful because it allows the standard comparison of the degree of disease severity, has a major draw-back in that patients with different symptoms may present the same severity score, as happened with P13, P15, and P16 (all with a score of 17).

The results obtained clearly indicate that it is not possible to predict the evolution of the clinical symptoms even among affected sibs. The finding of subclinical cases with allele N370S in the homozygous state or associated with a null allele, such as the 1066+1 G→A allele (in P18), contradicts the hypothesis of this latter genotype being associated with a particularly severe clinical phenotype and seems to indicate that a correlation between the amount of functional residual glucocerebrosidase and the clinical phenotype cannot be established in Gaucher disease. The remarkable capacities of activation of the N370S mutated glucocerebrosidase when in the presence of saposins C and phosphatidylserine could partially account for the considerable heterogeneity verified among patients with allele N370S.

On the basis of the N370S carrier frequency in Portugal, a large number of subclinical homozygotes is expected to exist. The present identification of a subclinical compound heterozygote (N370S/1066+1 G→A) leads us to believe that the number of undiagnosed type 1 patients may be larger than previously thought.

The lack of correlation between the genotype at the glucocerebrosidase locus and the patient's phenotype suggests that additional factors have to be involved in the clinical expression of this disease. The identification of these factors seems to be essential for the better understanding of the pathophysiology of GD.

We wish to thank the patients and their relatives for their cooperation as well as the clinicians who referred the patients to us and provided their medical records. This work was supported by grants BD/2299/92-ID and BD/1042/90-ID from JNICT (Portugal).


Molecular characterisation of type 1 Gaucher disease families and patients: intrafamilial heterogeneity at the clinical level.
O Amaral, A M Fortuna, L Lacerda, R Pinto and M C Sa Miranda

J Med Genet 1994 31: 401-404
doi: 10.1136/jmg.31.5.401

Updated information and services can be found at:
http://jmg.bmj.com/content/31/5/401

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/