A new missense mutation of fibrillin in a patient with Marfan syndrome

D R Hewett, J R Lynch, A Child, B C Sykes

Abstract
A patient with Marfan syndrome was shown to be heterozygous for a G to A transition at nucleotide 3952 of the FBN1 gene. This would result in a cysteine to tyrosine substitution at amino acid 1223 in the fibrillin protein.

Marfan syndrome (MFS) is an autosomal dominant inherited disorder of connective tissue with a frequency of 1 in 10 000. It classically affects three systems, cardiovascular, ocular, and skeletal.1 The fibrillin gene FBN1 is the disease causing locus for MFS.2 The fibrillin is a 350 kDa protein that is an abundant component of 10–12 microfibrils.3 A full length cDNA copy of the FBN1 mRNA was screened for mutations using 16 sets of overlapping primers and the polymerase chain reaction (PCR) to search for single stranded conformation polymorphisms (SSCP).4,5 SSCP analysis on the Sau961 digestion fragments of the amplification product of primers G2S (5’ AGGGAATATCGATGCTGCC 3’) and G2AS (5’ TCTGAGCTCTGATGGTG 3’) gave a band of aberrant mobility (data not shown). Sequencing of this region showed patient 2521 to be heterozygous for a G to A transition at nucleotide 3952. This would be predicted to change cysteine 1223 of the fibrillin polypeptide to a tyrosine. Screening of the unaffected members of the pedigree was performed using hybridisation of allele specific oligonucleotides to either the G or the A allele (fig 1).

None of the unaffected members of the pedigree was found to carry the A allele (fig 1). ASO screening of 100 controls and 58 other MFS patients showed it was neither a common cause of MFS nor a common polymorphic variant.

Patient 2521 is a 66 year old female whose parents were unaffected by MFS. She has bilateral dislocated lenses, myopia, and severe kyphoscoliosis. She has arachnodactyly in her left hand only, and one foot is longer than the other. She was diagnosed as having MFS when she gave birth to a daughter with a pronounced marfanoid habitus. The child had bilateral dislocated lenses, long fingers, hands, and feet, pectus excavatum, kyphoscoliosis, and poorly developed musculature. She died at 15 months from congenital heart disease complicated by bronchopneumonia. Necropsy showed that the pulmonary valve had only two cusps. There was no evidence of either mitral or aortic valve involvement in either patient 2521 or her affected daughter.

There was further evidence to suggest the mutation was causal. No sample was available from either of her unaffected parents, so it was not possible to show directly that the first appearance of the MFS phenotype in the pedigree coincided with a de novo mutation at cysteine 1223. The pedigree was genotyped for the (CA)n polymorphism MTS2 within intron 8 of the FBN1 gene6 (fig 1). Each of the MTS2 alleles of patient 2521 was shared by at least one of her unaffected sibs. This showed that the mutation in patient 2521 was a de novo

---

Figure 1 Screening of the proband (arrowed) and her pedigree by ASO hybridisation. G2S and G2S (5’ ATGATCTCTGTCGTCATT 3’) primed PCR amplification products of genomic DNA from pedigree members were filter immobilised.7 Amplifications were carried out according to standard conditions; with a temperature profile of: 94°C for 0.5 minutes; 58°C for 1.0 minutes; 72°C for 1.0 minute (30 cycles). No samples were available from any of the deceased persons. Directly below each extant family member is shown the autoradiograph from hybridisation of filter with oligonucleotides complementary to either the wild type (CYS 1223) allele or the mutant (TYR 1223) allele. The primers used were: CYS1223 ASO: (5′ GCCGAGCTACAGCTACATT3′), and TYR1223 ASO: (5′ AATGAGCTATCAGCGGGY3′). The mismatched base of each oligonucleotide is underlined. Washing was carried out at 58°C (TYR1223 ASO) or 60°C (CYS1223 ASO) according to standard procedures.8 The MTS2 polymorphism genotypes are also shown on the pedigree. The MTS2 alleles were amplified and recognised under the conditions detailed in reference 9.
A new missense mutation of fibrillin in a patient with Marfan syndrome

C1223Y mutation is located within the 15th EGF-like repeat of fibrillin. It is not the first cysteine substitution to be described in Marfan syndrome. At a recent meeting eight other MFS patients were shown to be heterozygous for missense mutations at key cysteine residues in fibrillin.⁹⁻¹⁰ All these cysteine substitutions were unique, and six of them occurred at highly conserved residues within EGF-like repeats.¹⁰⁻¹⁷ There are 47 EGF-like repeats in the fibrillin molecule.³⁻¹² Fibrillin EGF-like repeat 15 is shown schematically in fig 2, with the cysteines numbered from 1 to 6; cysteine 1223 occurs at cysteine number 5 in this repeat. The substitution of a tyrosine residue here would clearly disrupt the disulphide bond between cysteine number 5 and cysteine number 6. The relative positions of the other six cysteine mutations that occur in other EGF-like repeats are also shown in fig 2.

The precedent for disease related substitutions at cysteine residues in EGF-like repeats is not limited to fibrillin and MFS. Similar mutations have been detected in human factor IX and low density lipoprotein receptor in cases of haemophilia B²⁰ and familial hypercholesterolaemia.²¹⁻²³

We gratefully acknowledge access to sequence information, before publication, from Dr F Ramirez. This work was supported by a grant from the British Heart Foundation. D R Hewet is in receipt of a studentship from the Medical Research Council. Dr A Child gratefully acknowledges support from the Arthritis and Rheumatism Council and the GNS Trust. The help of Dr Harold Bird, Professor Robert Dickson, and Dr Buckle, physicians caring for patient 2521, was much appreciated.

19 Corson GM, Chalberg SC, Dietz HC, Charbonneau NL, Sakai LY. Fibrillin binds calcium and is coded by cDNAs that reveal a multidomain structure and alternatively spliced exons at the 5’ end. Genomics 1993;17:476–84.
A new missense mutation of fibrillin in a patient with Marfan syndrome.

D R Hewett, J R Lynch, A Child and B C Sykes

doi: 10.1136/jmg.31.4.338

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/