X linked myotubular myopathy (MTM1) maps between DXS304 and DXS305, closely linked to the DXS455 VNTR and a new, highly informative microsatellite marker (DXS1684)


Abstract
The locus for X linked recessive myotubular myopathy (MTM1) has previously been mapped to Xq28 by linkage analysis. We report two new families that show recombination between MTM1 and either DXS304 or DXS52. These families and a third previously described recombinant family were analysed with ten highly polymorphic VNTR markers in the DXS304-DXS52 interval, the DXS455 VNTR and a newly characterised microsatellite, DXS1684 (82% heterozygosity). These markers did not recombine with MTM1 in the three families. Together with the recent mapping of an interstitial X chromosome deletion in a female patient with moderate signs of myotubular myopathy, our data suggest the following order of loci in Xq28: cen-DXS304-(DXS455, MTM1)-DXS1684-DXS305-DXS52-tel. This considerably refined localisation of the MTM1 locus should facilitate positional cloning of the gene. The availability of highly polymorphic and very closely linked markers will markedly improve carrier and prenatal diagnosis of MTM1.

Material and methods
CHARACTERISATION OF MICROSATELLITES
Restriction digests of cosmids contigs from the Xq28 region were screened with a random primed CA:TG repeat polynucleotide (Pharmacia). Positive cosmids assigned to contigs in the DXS304-DXS305 interval which overlaps with the distal end of the region deleted in the female patient, thereby validating the latter case for mapping the MTM1 locus. Taken together, the linkage data and the analysis of the deletion patient (Dahl et al, in preparation) considerably refine the localisation of MTM1 to a region of less than 1 Mb.

FAMILY STUDIES
DNA from available family members was analysed by Southern blotting for DXS304 (probe U6.2, TaqI digest), DXS455 (probe 346.72, BstYI digest), DXS52, and F8C (F814, BclI digest). Polymerase chain reaction was per-
Results

ISOLATION OF A NEW MICROSATELLITE

As part of the systematic mapping of Xq28, YAC and cosmid contigs have been constructed in Heidelberg15 (Gong et al and Rogner et al, in preparation). Cosmids assigned to the DXS304-DXS305 interval were screened for CA repeats and appropriate subclones were sequenced. Three different CA repeats were identified (with 16, 18, and 22 CA dinucleotides respectively). Further PCR analysis showed that only one of them (St71.1, DXS1684) was polymorphic. Seven alleles have been detected, and a heterozygosity of 82% was calculated from analysis of 36 independent X chromosomes. Two CEPH families (35 and 884) that showed recombination between DXS304 and DXS52 or F8C were analysed, confirming the localisation of the polymorphism distal to DXS304. DXS1684 was further mapped at about 600 kb proximal to DXS305 on a YAC contig from the region (Rogner et al, in preparation) (fig 1). Single copy subclones, derived from the same cosmid as St71.1, were used as probes for Southern blot analysis of five independent somatic cell hybrids retaining the deleted X chromosome from the female patient with moderate myotubular myopathy1 (Dahl et al, in preparation). This showed that DXS1684 is located distal to the telomeric deletion breakpoint.

ANALYSIS OF RECOMBINANT FAMILIES

Three families showing recombination between MTM1 and the Xq28 markers DXS304 or DXS52 (fig 2) were analysed with the new DXS1684 microsatellite, and with the DXS455 VNTR previously localised in the DXS296-DXS305/DXS374 interval.16 In family 1, although no DNA was available from the two affected males, their obligatory carrier mothers carried different maternal alleles at DXS1113 (near IDS) and at DXS304. The DXS1684 microsatellite, DXS455, and DXS52 were all informative and segregated concordantly in the two carriers. This provides evidence for the MTM1 locus being located telomeric to DXS304. (Segregation in other family members is consistent with the grandmother being a carrier, but it cannot be formally excluded that the mutation originated by germinal mosaicism from the grandfather, as was described by Ar-
veiler et al.7 in a family with Wiskott-Aldrich syndrome.) In family 2, an obligate carrier showed recombination between MTM1 and both DXS302 and F8C, but was non-recurrent with DXS1684 (DXS455 and DXS304 were not informative). In family 3, a normal male was shown previously to be recombinant for DXS52 and F8C, but not for DXS304 (fig 2). DXS455 and DXS1684 were both informative and non-recombinant in this male. A more proximal recombination, between DXS105 (in proximal Xq27) and DXS304, was also detected in the same person. The presence of a double recombination is not surprising, as the interval between DXS105 and DXS52 is about 30 cm and ~20 cm between DXS105 and DXS304.11 The recombinants in families 2 and 3 thus place MTM1 well proximal to DXS52 and close to DXS1684.

Discussion

We have isolated a newly highly informative microsatellite in the DXS304-DXS305 interval, and analysed it, together with the DXS455 VNTR, in three recombinant MTM1 families. Our results indicate that MTM1 is located between DXS304 and DXS52, and appears closer to DXS455 and DXS1684, as these markers showed no recombination with the disease locus in the three families. The approximate 5 Mb DXS304-DXS52 interval12 overlaps with the heterozygous deletion recently analysed in a female with moderate myotubular myopathy; the deletion encompasses DXS304 and DXS455, while DXS305 and DXS1684 are distal to it. The phenotypic expression is likely to be the result of a preferential inactivation of the normal X chromosome7 (Dahl et al., in preparation). The overlap with the candidate region defined by linkage analysis validates the use of this deletion to map the MTM1 gene. Taking into account the marker order determined previously,12-14 the following order can be proposed: cen-IDS, DXS1113-DXS304-(DXS455, MTM1)-DXS1684-DXS305/DXS374-DXS52-F8C-pter. The candidate region for MTM1 spans about 1 Mb (fig 1) and includes the highly informative marker DXS455. This considerable refinement in the localisation of MTM1 will facilitate positional cloning strategies. Our results also allow for a more reliable and efficient carrier and prenatal diagnosis. While some female carriers can be diagnosed on the basis of a muscle biopsy showing abnormal small muscle fibres with centrally located nuclei, a normal biopsy does not exclude carrier status. Linkage analysis is thus required for genetic counselling purposes. Available genetic maps indicate that the distance between the IDS, DXS1113, and DXS305 flanking markers is about 7 to 8 cm.15,20 The flanking loci DXS1684 and DXS1113 now provide a very informative PCR test for carrier and prenatal diagnosis of MTM1. When it now haploinsufficiency of other family members, will give an accuracy of greater than 0.99. Other highly informative markers close to the MTM1 locus, such as DXS304 and DXS305, will increase the informativeness and accuracy of diagnosis, but they still at present require Southern blot analyses.

This study was supported by grants from Association Française contre les Myopathies (AFM) and GREG to JLM, and from the EC genome analysis programme to AP. These family studies were initiated at the International MTM Consortium supported by funds from the European Neuromuscular Center (ENMC) and the EMMA. We wish to thank Christine Kretz and Serge Vicarie for excellent technical assistance, and Dr S Warren for the gift of probe 346.72 (DXS455).

X linked myotubular myopathy (MTM1) maps between DXS304 and DXS305, closely linked to the DXS455 VNTR and a new, highly informative microsatellite marker (DXS1684).


J Med Genet 1994 31: 922-924
doi: 10.1136/jmg.31.12.922