APC mutation associated with late onset of familial adenomatous polyposis

Abstract

Familial adenomatous polyposis is an autosomal dominantly inherited disorder. Mutation studies in the corresponding gene (APC) may provide information for predictive tests for persons at risk in affected families. We report here a new mutation in exon 6 (codon 233) of the APC gene and clinical data in a large family with late onset of the disease in most affected persons.

(J Med Genet 1994;31:888-890)

Familial adenomatous polyposis (FAP) is an autosomal dominantly inherited disorder characterised by the development, at an early age, of over 100 adenomatous polyps in the colon. The risk of colon carcinoma in FAP patients is very high and prophylactic colectomy is therefore advocated once the diagnosis has been made. The APC gene was first localised to chromosome 5q and later isolated.1-3 Most of the germline mutations associated with FAP have been shown to be in the first half of exon 15 of the APC gene and they mostly consist of base pair deletions with two hot spots at codons 1061 and 1309. Mutations in other parts of the gene create stop codons or alteration of the reading frame.4-5 Here we report a new mutation in exon 6 of the APC gene in one large family, with the phenotypic findings.

Patients and methods

SAMPLES

Patients were ascertained from the St Mark's Polyposis Registry. DNA was extracted from 5 ml of blood using a salt extraction procedure as described elsewhere.7 Spouses of persons from the same family were used as controls. Restriction fragment length polymorphism analysis was carried out according to standard procedures.1 The number of colonic adenomas at colectomy was derived by extrapolation based on the surface area of excised colon; the polyps were counted per cm² at a number of sites.

DETECTION OF MUTATIONS

Exon 6 of the APC gene was amplified with the following primers:

6UP: GGTAGCCATAGTATGATATT`TCT
6RP: CTACCTATTTTATACCCAAAAAC

The polymerase chain reaction (PCR) was performed as described by Groden et al.2 The amplified product was purified using glass-milk (Bio 101) and the mutation was detected by a chemical cleavage mismatch technique. The method involves the modification, by hydroxylamine, of heteroduplexes between wild type and mutant DNA and their cleavage by piperidine as described elsewhere.6 The cleaved product was detected by electrophoresis on a 6% denaturing gel. Biotinylated PCR product was used in a dideoxy sequencing reaction (Sequenase version 2.0, USB).

Results

A mutation band at around 130 bp was detected by chemical cleavage mismatch in the affected persons only (fig 1). On sequencing, the mutation was found to be present in codon 233 (fig 2): a substitution of T for C, creating a stop codon (Gln to stop). Linkage studies had previously been carried out in this family with DNA markers localised on both sides of the APC gene; all affected subjects shared a common haplotype (fig 3, in bold). The presence of the characterised APC mutation in exon 6 and linkage results were compared for each person under study.

Linkage analysis performed on two different blood samples from subject IV.22 gave him a high predicted risk of being affected on the basis of the results obtained with YN5.48, ECB27, and FB54D, but no adenomas were observed on colonoscopy at 30 years of age. When the mutation was subsequently defined, all the other persons who appeared to be at risk by linkage analysis were found to carry the germline mutation in exon 6, except IV.22. This result was confirmed by sequencing of the

Figure 1 Chemical cleavage mismatch analysis of exon 6. Lane 1: marker (6 x 174 HinfI); lanes 2 to 12: IV.34, IV.20, V.13, V.14, IV.22, IV.21, IV.10, III.23, IV.12, IV.a, negative control, respectively.
with multiple sessile polyps on colonoscopy (0.1-0.2 cm in diameter).

The clinical results for members of this family are summarised in the table.

Discussion and conclusion

We have detected a new mutation in exon 6 of the APC gene in persons with FAP in a large family. Mutation analysis confirmed the linkage studies which were previously performed in this family, except in IV.22. For this person, the mutation data were consistent with the colonoscopy examination result. The detection of mutation is therefore a valuable tool for accurately identifying affected persons.

The mutation found in this study is associated with late onset of the disease and rectal sparing. The relatively mild phenotype may be associated with the fact that the mutation is sited more at the 5' end of the APC gene than the common mutations in exon 15, resulting in a smaller truncated protein. It has been suggested that a larger, faulty gene product could interfere more with dimerisation with the wild type protein than a protein truncated more proximally. Mutations much closer to the 5' end of the APC gene than the one described here were recently reported by Spiro et al. in families with an attenuated form of FAP (AAPC). It has also been suggested that modifier genes influence the polyposis phenotype in Min mice and a similar influence represents another possible explanation for the results reported here. IV.21 was examined for congenital hypertrophy of the retinal pigment epithelium (CHRPE) but none was observed. This is consistent with the findings reported by Olshwang et al. which show that CHRPE lesions are almost always absent when the APC mutation is situated before exon 9.

Four out of five affected persons in this family presented late with relative rectal sparing of colonic adenomas. However, one affected woman (V.6, not shown in fig 3) was diagnosed at 19 years, when scattered colonic and rectal polyps were detected. Affected persons in this family have upper gastrointestinal (GI) adenomas, but symptomatic desmoids have not been reported. In all the affected cases, the rectum was either very sparsely involved or not involved at all. Up to now, our clinical practice has been to screen for the FAP phenotype by rigid sigmoidoscopy alone as we have previously felt confident that this will diagnose all cases. The clinical presentation of patients from this family with a mutation in exon 6 of the APC gene has now led us to alter our clinical practice to include colonoscopic surveillance with biopsy when clinically indicated. This is of particular importance considering the variable (and often relatively late) age at onset in different affected persons in this family.

We would like to acknowledge the help of K Neale, J Landgrebe, and J More in the Polyposis Registry, and I Talbot in the Pathology Laboratory, St Mark's Hospital.

Summary of clinical results for affected and at risk persons

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Presentation</th>
<th>Age</th>
<th>Adenomas</th>
<th>Examination or pathological specimen</th>
<th>Site</th>
<th>APC mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV.22</td>
<td>Asymptomatic</td>
<td>30</td>
<td>0</td>
<td>Colonoscopy</td>
<td>Rectal</td>
<td>-</td>
</tr>
<tr>
<td>IV.21</td>
<td>Asymptomatic</td>
<td>34</td>
<td>Few</td>
<td>Upper GL endoscopy</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3760</td>
<td>Sigmoidoscopy</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>IV.20</td>
<td>Asymptomatic</td>
<td>30</td>
<td>0</td>
<td>Colonoscopy</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37</td>
<td>Multiple</td>
<td>Colonoscopy</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3465</td>
<td>Sigmoidoscopy</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>IV.19</td>
<td>Asymptomatic</td>
<td>39</td>
<td>0</td>
<td>Colonoscopy</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>IV.12</td>
<td>Asymptomatic</td>
<td>39</td>
<td>1365</td>
<td>Colonoscopy</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>IV.10</td>
<td>Asymptomatic</td>
<td>42</td>
<td>10</td>
<td>Sigmoidoscopy</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>Upper GL endoscopy</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Sigmoidoscopy</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2585</td>
<td>Sigmoidoscopy</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>V.15</td>
<td>Asymptomatic</td>
<td>15</td>
<td>0</td>
<td>Sigmoidoscopy</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>V.14</td>
<td>Asymptomatic</td>
<td>16</td>
<td>0</td>
<td>Sigmoidoscopy</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>V.13</td>
<td>Asymptomatic</td>
<td>18</td>
<td>0</td>
<td>Sigmoidoscopy</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>V.6</td>
<td>Asymptomatic</td>
<td>19</td>
<td>Few</td>
<td>Colonoscopy</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1625</td>
<td>Colonoscopy</td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

APC mutation associated with late onset of familial adenomatous polyposis.

J Med Genet 1994 31: 888-890
doi: 10.1136/jmg.31.11.888

Updated information and services can be found at:
http://jmg.bmj.com/content/31/11/888

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/