LETTERS TO THE EDITOR

Paternal and maternal transmission of pseudohyoparathyroidism type Ia in a family with Albright hereditary osteodystrophy: no evidence of genomic imprinting

Albright hereditary osteodystrophy (AHO) is a rare autosomal dominant disorder characterised by short stature, obesity, round facies, subcutaneous calcifications, and characteristic skeletal defects.1 Pseudohyoparathyroidism type Ia (PHP-Ia) is AHO with resistance to parathyroid hormone (PTH) and other hormones acting via cyclic adenosine monophosphate (cAMP) in the presence of reduced Gα protein. AHO alone (without hormone resistance) has been classified as pseudohyoparathyroidism (PHP-P).2 Several heterozygous mutations within the gene encoding the α subunit of the G protein (GNAS1), which stimulates the adenylyl cyclase, have been identified in patients with AHO,3 whether they were affected by PHP-Ia or PHP-P.

After reviewing published reports of 31 AHO kindreds, it has been recently suggested that genomic imprinting may be involved in the differing phenotypic expression: in all families studied so far PHP was solely maternally inherited, whereas PHP-P was transmitted by the father.4 We recently reported on a family with AHO and reduced GNAS1 activity.5 The pedigree of this family is shown in the figure. One male infant (IV-3) was affected by PHP-Ia and four family members (II-6, II-2, III-3, and III-5) had PHP-P.4 A female infant (IV-1) was born to a healthy mother (III-1) and a father affected by PHP-Ia (III-2). During the first year of life several subcutaneous nodules (osteoma cutis) developed on the child’s back and left arm. So far serum calcium, parathyroid hormone (PTH), free triiodothyronine (FT3), free thyroxine (FT4), and thyrotropin (TSH) are normal, but phosphorus has gradually risen to 9.3 mg/dl (normal 5 to 8 mg/dl). At the age of 14 months a modified Ellsworth-Howard test was performed.1 Injection of synthetic 1-38 hPTH resulted in a blunted response of plasma cAMP (basal 23.2 nmol/l, after five minutes 29.0 nmol/l, after 10 minutes 21.0 nmol/l; normal > 100 nmol/l after five or 10 minutes) and urinary cAMP (basal 3.6 nmol/dl glomerular filtrate, after 90 minutes 3.4 nmol/dl glomerular filtrate; normal > 60 nmol/dl glomerular filtrate). The tubular reabsorption of phosphate (TRP) did not decrease after injection of PTH. Injection of thyrotropin releasing hormone (TRH) resulted in an exaggerated response of TSH (basal 30 mU/l, after 30 minutes 28.6 mU/l; normal 3 to 25 mU/l after 30 minutes). Therefore, the diagnosis of normocalcaemic PHP-Ia was made.

A similar pattern of hormone unresponsiveness has been found in the other patient with PHP-Ia (IV-3) at the age of 10 years. In addition, this child also exhibited hypocalcaemia and hyperphosphataemia and serum PTH was increased (230 pg/ml, normal 15 to 55 pg/ml).6 All patients with PHP-P (II-2, III-3, and III-5) showed a normal increase of cAMP after injection of 1-38 hPTH.6 The results show that PHP-Ia can be inherited partially as well as maternally, suggesting that mechanisms other than genomic imprinting are responsible for the full expression of hormone resistance, at least within this family. It has been suggested by others that additional components of the Gα coupled signal transduction (for example, calmodulin, cAMP phosphodiesterase, protein kinase A) may be responsible for the difference between PHP-Ia and PHP-P.5 Recently, a proximal 15q chromosomal deletion was detected in a female with PHP-Ia as well as in her mother, who also had PHP-Ia.7 Molecular analyses with 10 different DNA markers on this region did not detect any uniparental disomy or deletion.

Further studies are needed to clarify whether genomic imprinting (especially within the region 20q12-q13.2), which includes the locus for GNAS18, accounts for variable expression of AHO in most affected families.

VOLKER SCHUSTER
Children’s Hospital, University of Würzburg, 97080 Würzburg, Germany.
WOLFRAM KRESS
Department of Human Genetics, University of Würzburg, 97047 Würzburg, Germany.

Severe pulmonary and digestive disease in a cystic fibrosis child homozygous for G542X

In southern France, the G542X mutation,1 in which the glycine (GCA) at amino acid position 542 in exon 11 is mutated to a stop codon (TGA), accounts for 5-6% of the CF chromosomes2 and represents the second most frequent CF mutation in this population after the deletion ΔF508. In a sample of 150 patients who have been genotyped for CFT mutations (unpublished results), we identified only one patient with two G542X alleles. In contrast to other reports on homozygous nonsense mutations3-11 describing mild expression of the disease, the 6 year old girl presented here has been severely affected since infancy.

The patient is the youngest of two sibs born to healthy, unrelated patients originating...
ing from Murcia, Spain. She was born in 1987, without meconium ileus, and was diagnosed as having cystic fibrosis at the age of 5 months, on the basis of growth retardation, gastrointestinal problems (especially diarrhoea and steatorrhoea), and repeated bronchitis. Staphylococcus aureus then Pseudomonas aeruginosa has been isolated from the patient’s spu tum since she was 6 months old. She is treated with pancreatic enzymes and antibiotics, but her obstructive lung disease has increased and she is classified as severely affected by the clinicians.

Using the SSCP technique to study the DNA extracted from the patient and her family, we detected then identified the stop mutation G542X in the two CFTR genes transmitted to the affected child. This mutation is associated with haplotype 1121211 on the paternal chromosome, and with haplotype 1221211 on the maternal chromosome, as defined by the markers D/TaqI, met H/TaqI, G2/XbaI, XV2/TaqI, KM19/Prt, D9/Mpl, and J311/Mpl.

This result is predicted to result in decreased levels of mutant messenger RNA and in a truncated protein product from the NBD-1, suppressing 63% of the total expression of the homologous gene. Patients for G542X previously reported had mild pulmonary disease, suggesting that it would imply alternative splicing mechanisms suppressing the effect of the stop mutation in some tissues. Contrasting with these reports, we present the second case of a child homozygous for G542X with severe pancreatic and lung disease. Another similar finding has been reported in a Turkish boy in the neonatal period by Bienvenu et al. Such contradictions in genotype/phenotype correlations might be resolved in the future by mRNA and protein expression studies in target tissues.

We wish to express our gratitude to the Association Française de Lutte contre la Mucoviscidose (AFLM). The manuscript was typed by T. Bousquet.

MARIE DESGORGES MAGUELOU LAUSSÉ BERNARD ROLLIN JACQUES DEMAIÉLIE MATHIE CLAUSTRES Laboratoire de Biochimie Génétique, CNRS, CRBM U249 et GREPAM, Institut de Biologie Théorique, 34060 Montpellier, France.

Cutis laxa: a feature of Costello syndrome

We were extremely interested to read the letter 'Cutis laxa and the Costello syndrome', in which the authors review case 5 of their previous paper describing children with cutis laxa and make a diagnosis of Costello syndrome. Recently, and independently, we have reviewed case 7 from the same paper and on both history and clinical examination made an unequivocal diagnosis of Costello syndrome.

Now that two separate cases within this subgroup of congenital cutis laxa with retardation of growth and development have been independently diagnosed as Costello syndrome, it is obviously time for a review of this heterogeneous group and recognition of this syndrome as a diagnostic entity in congenital cutis laxa, especially in the presence of postnatal growth retardation and delayed development.

Cutis laxa: a feature of Costello syndrome

We were extremely interested to read the letter 'Cutis laxa and the Costello syndrome', in which the authors review case 5 of their previous paper describing children with cutis laxa and make a diagnosis of Costello syndrome. Recently, and independently, we have reviewed case 7 from the same paper and on both history and clinical examination made an unequivocal diagnosis of Costello syndrome.

Now that two separate cases within this subgroup of congenital cutis laxa with retardation of growth and development have been independently diagnosed as Costello syndrome, it is obviously time for a review of this heterogeneous group and recognition of this syndrome as a diagnostic entity in congenital cutis laxa, especially in the presence of postnatal growth retardation and delayed development.

Fibrodysplasia ossificans progressiva

I read with interest the article by Connor et al. 'A three generation family with fibrodysplasia ossificans progressiva' (J Med Genet 1993;30:807-9). In the article, hip synovial osteochondromatosis was described and said never to have been reported previously in FOP. In fact, Kalifa et al. described this finding in Pediatric Radiology (1993;23:91-3) in an article entitled 'Fibrodysplasia ossificans progressiva and synovial chondromatosis in 10 and 15 year old patients'. Given these reports perhaps synovial chondromatosis de-serves to be considered a feature of FOP.

Fibrodysplasia ossificans progressiva

I read with interest the article by Connor et al. 'A three generation family with fibrodysplasia ossificans progressiva' (J Med Genet 1993;30:807-9). In the article, hip synovial osteochondromatosis was described and said never to have been reported previously in FOP. In fact, Kalifa et al. described this finding in Pediatric Radiology (1993;23:91-3) in an article entitled 'Fibrodysplasia ossificans progressiva and synovial chondromatosis in 10 and 15 year old patients'. Given these reports perhaps synovial chondromatosis deserves to be considered a feature of FOP.

Low segregation ratios in autosomal recessive disorders

I read with interest the article by Bundey and Young on possible causes for low segregation ratios in autosomal recessive disorders. They hypothesize on possible mechanisms and explanations concerning the low segregation ratio in cartilaginous hypoplasia (CHH) found in Finland. I would like to add some further thoughts and possibilities to the behavioural, methodological, and biological factors that were described in their paper.

1. Paternal parents may delay in having further children, "even in the absence of genetic counselling". This implies that with improvement of clinical genetic facilities, proper early genetic diagnosis, and adequate, non-directive counselling, segregation ratios in AR disorders will in future be even lower. As a result of this, we may then actually be measuring an effect of counselling upon parents' behaviour instead of non-three biological mechanisms. It will then be difficult to find unbiased, that is, uncounseled, populations.

2. Paternal parents may have been treated with drugs without being diagnosed. We have seen the results of this in the Finnish CHH cases. However, their conclusion was based on 14 small families with linkage analysis, where the proportion of affected sibs (after exclusion of the probands) was 0-38. The chance of finding even more (non-penetrant) affected sibs is unlikely, given the already high segregation ratio in this sample, and so the question of reduced penetrance is still open.

3. McKusich et al., in their original paper, put forward environmental factors as a hypothetical cause of reduced penetrance and a low segregation ratio in CHH. Either the homoygous phenotype is corrected by some normal dietary constituent or the homoygous phenotype is evident only in combination with some environmental factor. Although they refer to two X linked disorders to illustrate this possibility (GDP deficiency and vitamin D resistant rickets), environmental factors could also hypothetically lower the segregation ratio in AR disorders.

5. Apparent reduced penetrance may partly be the result of ascertainment bias, since in most of the studies undertaken, short stature and x ray abnormalities were the main criteria for diagnosis. But, in addition, variable expression, although uncommon in most AR disorders, may also cause a low segregation ratio. The occurrence of mild immunodeficiency without dwarfism has been described in CHH. However, in most studies only short statured CHH patients have been checked for immunodeficiency, and the exception of one in which sibs were used as controls. Therefore, CHH patients with only mild immunodeficiency could have been missed, thereby skewing the number of affected sibs.

The well known increased risk of intrauterine lethality in several AR disorders, though not in CHH, can be considered to be the most severe of this spectrum of variability. Also the inheritance pattern of cystic fibrosis, perhaps because of other modifying loci, makes it plausible that