LETTERS TO THE EDITOR

Male infertility as the only presenting sign of cystic fibrosis when homozygous for the mild mutation R117H

Since the identification of the cystic fibrosis gene (CFTR),1 more than 265 mutations have been described (CF Genetic Analysis Consortium, 1992). The most common disease causing mutation, ∆F508, occurs in approximately 70% of CF chromosomes and causes moderate to severe disease,2 with variable prevalence in populations of different ethnic origin. Among the numerous rare mutations, R117H (a G to A transition at nucleotide 482) produces a missense amino acid substitution (arginine to histidine) in the first transmembrane domain of CFTR. It has only been reported in the heterozygous state, usually with ∆F508 occurring in the other CFTR gene; the compound heterozygotes are mildly affected.3,4

We have studied a 30 year old French male with sterility owing to congenital bilateral absence of the vas deferens (CBAVD). He is homozygous for the R117H CFTR mutation, which was detected by DGGE screening and characterised by direct sequencing of PCR amplified DNA from exon 4 using the Sequenase USB kit. The subject has no respiratory or pancreatic involvement and has a normal sweat electrolyte value. His parents are not consanguineous and there are no other cases of CBAVD or CF in his family.

Based on the primary finding of a higher rate of AF508 heterozygosity in infertile males,5 it has recently been suggested that isolated CBAVD might represent a primary genetic form of CF.6 Further cases presenting with infertility have now been reported.7,8 We have identified this as the causative mutation in three sibs from Italy reporting additional patients similar to those we described in 1985 as a new autosomal recessive syndrome.3 This brings the number of cases with limb/pelvis-hypoplasia/aplasia syndrome (LPHAS) to nine (five female and four male). This total includes one case from Brazil9 and three sibs from Israel.10 Among these five sibs, the three sets of parents were with normal fertility. It is therefore possible that the private syndrome does not exist. Many 'new' syndromes are referred to as 'private', particularly if they are first described in the third world. So called 'private' syndromes may in fact be previously unrecognised or unreported and yet be 'relatively common' in certain populations. The absence of known parental consanguinity in two families with LPHAS could imply that the gene frequency in the relevant population may not be very low.

I wish to report further data on one of the original patients who was re-evaluated at the age of 18 (in 1989) because of absent menarche. His infertility and other secondary sexual characteristics had developed by the age of 15 years. She and her parents were not particularly anxious about her fertility because of her severe handicap. They wanted to be sure that there were no life threatening consequences of the disease. Her FSH, LH, and prolactin levels were normal. Ultrasonography showed apparently normal ovaries and absent uterus. This was confirmed by another ultrasonographer. It was not possible to perform pelvic examinations because of virginal Laporoscopy examination was declined.

These data indicate normal gonadal development in a female and support the finding of Farag et al10 of uterus hypoplasia/aplasia. Such findings in two out of five reported females suggest that it is not fortuitous and is probably a variable manifestation of LPHAS that should be considered in future cases.

From a nosological perspective, LPHAS is an appropriate descriptive term. However, in the light of the müllerian hypoplasia/aplasia, the term limb/pelvis/uterus hypoplasia/aplasia may be a more precise name. Three of our reports have used the respective authors' names for syndrome identification.1,3 To avoid confusion, I suggest the use of the name of the first reporting author followed by a brief description of the major characteristic. Considering the expansion in the number of new reported syndromes, this policy would make for easier cataloguing of genetic disorders.

AHMAD S TEEBI
Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.


Limb/pelvis/uterus-hypoplasia/aplasia syndrome

I read with great interest the consecutive papers of Farag et al10 from Kuwait and Camera et al10 from Italy reporting additional patients similar to those we described in 1985 as a new autosomal recessive syndrome. This brings the number of cases with limb/pelvis-hypoplasia/aplasia syndrome (LPHAS) to nine (five female and four male). This total includes one case from Brazil9 and the three sibs from Israel.10 Among these five sibs, the three sets of parents were with normal fertility. It is therefore possible that the private syndrome does not exist. Many 'new' syndromes are referred to as 'private' particularly if they are first described in the third world. So called 'private' syndromes may in fact be previously unrecognised or unreported and yet be 'relatively common' in certain populations. The absence of known parental consanguinity in two families with LPHAS could imply that the gene frequency in the relevant population may not be very low.

I wish to report further data on one of the original patients who was re-evaluated at the age of 18 (in 1989) because of absent menarche. His infertility and other secondary sexual characteristics had developed by the age of 15 years. She and her parents were not particularly anxious about her fertility because of her severe handicap. They wanted to be sure that there were no life threatening consequences of the disease. Her FSH, LH, and prolactin levels were normal. Ultrasonography showed apparently normal ovaries and absent uterus. This was confirmed by another ultrasonographer. It was not possible to perform pelvic examinations because of virginal Laporoscopy examination was declined.

These data indicate normal gonadal development in a female and support the findings of Farag et al10 of uterus hypoplasia/aplasia. Such findings in two out of five reported females suggest that it is not fortuitous and is probably a variable manifestation of LPHAS that should be considered in future cases.

From a nosological perspective, LPHAS is an appropriate descriptive term. However, in the light of the müllerian hypoplasia/aplasia, the term limb/pelvis/uterus hypoplasia/aplasia may be a more precise name. Three of our reports have used the respective authors' names for syndrome identification.1,3 To avoid confusion, I suggest the use of the name of the first reporting author followed by a brief description of the major characteristic. Considering the expansion in the number of new reported syndromes, this policy would make for easier cataloguing of genetic disorders.

Molecular characterisation of β thalassaemia heterozygotes in Brazil

At present over 100 different molecular defects producing thalassaemia have been identified. However, a limited number of specific mutations predominates in a given population.1 Most carriers of β thalassaemia in Brazil are descendants of Italian immigrants among whom the prevalence of β thalassaemia minor has been estimated at 6-4%.2 As the molecular basis of the disease has not been completely investigated, I carried out a study to determine the β globin mutations in patients heterozygous for β thalassaemia in south eastern Brazil.

High molecular weight DNA was prepared from peripheral leucocytes of 70 unrelated thalassaemia heterozygotes from the region of Campinas in south eastern Brazil (São Paulo State). The diagnosis was based on red cell indices and quantification of haemoglobin A, A2, and F as previously described.3 Identification of the β thalassaemia mutations was made by hybridising PCR amplified DNA with five labelled synthetic oligonucleotide probes. The primers for amplification, the sequence of the probes, and the dot blot hybridisation procedures were as previously described.4 Probes for four mutations were used: 5'-TCAGCAATGGTTCACATGCCGG-3' (BIVS-1 nt 110 (G-A)), 5'-ATTCAGCAATGGTTCACATGCCGG-3' (BIVS-1 nt 6 (T-C)), and 5'-ATTCAGCAATGGTTCACATGCCGG-3' (BIVS-1 nt 1 (G-A)). The presence or absence of BIVS-2 nt 745 (C-G) mutation was detected after digestion of the amplified DNA with RsaI. For this reaction we used a pair of primers which amplified a fragment from BIVS-2 nt 684 to codon 132 of exon 5.

Hybridisation of amplified DNA from the samples with the four oligonucleotide probes allowed the characterisation of almost 97% of the subjects. No new mutations were observed in this study, but not observed among the patients. From our
Male infertility as the only presenting sign of cystic fibrosis when homozygous for the mild mutation R117H.
T Bienvenu, C Beldjord, M Adjiman and J C Kaplan

J Med Genet 1993 30: 797
doi: 10.1136/jmg.30.9.797

Updated information and services can be found at:
http://jmg.bmj.com/content/30/9/797.1.citation

These include:
Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/