X linked spastic paraplegia (SPG2): clinical heterogeneity at a single gene locus

Dominique Bonneau, Jean-Michel Rozet, Christine Bulteau, Michel Berthier, René Mettey, Roger Gil, Arnold Munnich, Martine Le Merrer

Abstract
X linked hereditary spastic paraplegia is a rare condition that has been divided into two forms (the pure spastic form and the complicated form) as a function of clinical course and severity. A gene for pure hereditary spastic paraplegia (SPG2) has been mapped to the proximal long arm of the X chromosome (Xq21) by linkage to the DXS17 locus, while a gene for a complicated form of the disease has been mapped to the distal long arm by linkage to the DXS52 locus (Xq28).

Here we report on the mapping of a gene for complicated hereditary spastic paraplegia to the Xq21 region by linkage to the probe S9 at the DXS17 locus (Z = 5 at 0 = 0.04) in a three generation pedigree. Multipoint linkage analysis supports the distal location of the disease gene with respect to the DXYS1–DXS17 block (cen-DXYS1–DXS3–DXS17–SPG2–tel).

The observation of a complicated form of spastic paraplegia mapping to Xq21 raises the difficult issue of variable phenotypic expression, allelic heterogeneity, or even close proximity of two genes for hereditary spastic paraplegia in this region. However, since our study provides clinical evidence for intrafamilial heterogeneity in complicated X linked spastic paraplegia, the present data support the hypothesis of variable clinical expression of a single gene at the SPG2 locus, as previously suggested for SPG1. Finally, we report here what we believe to be the first evidence of clinical expression in heterozygous carriers.

Patients and methods

The present study was carried out in a three generation pedigree (fig 1) including 11 affected males and six obligate carriers. Extensive clinical examination was possible in 35 subjects (10 affected males, four obligate carriers, 21 relatives). Additional medical records and information were obtained in one affected male and two obligate carriers.

The clinical findings in three affected males and two expressing females (including an obligate carrier) are presented below. Clinical data on other affected males and heterozygous carriers are shown in tables 1 and 2.

CASE 1
The proband (IV.3), born in 1975, was first referred for abnormal gait at 17 months of age. Clinical evaluation showed mild spasticity of the lower limbs associated with severe ataxia and multidirectional nystagmus. Generalised seizures occurred at the age of 10 years, spastic paraplegia worsened thereafter, and he became wheelchair bound at the age of 13 years. At 14 years of age, he had spastic paraplegia and cerebellar syndrome of the upper extremities with dysarthria and nystagmus. His intelligence was impaired (IQ of 41 at the age of 9 years) and special schooling was required from the age of 5 years.

CASE 2
Patient IV.5, the brother of the proband, was born in 1981. Nystagmus and hyperreflexia were first noted at the age of 17 months. At 30 months, he had pyramidal signs of the lower limbs.
Table 1 Clinical features in affected males.

<table>
<thead>
<tr>
<th>Cases</th>
<th>Age at study (y)</th>
<th>First symptoms</th>
<th>Neurological signs</th>
</tr>
</thead>
<tbody>
<tr>
<td>II.3</td>
<td>NE</td>
<td>Nystagmus and abnormal gait in early childhood</td>
<td>Spastic gait at 20 y; required crutches. Sudden death at 34 y</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>Nystagmus noted early</td>
<td>Spastic and ataxic gait at 6 y; wheelchair bound at 20 y. Pyramidal signs in lower limbs. Normal intelligence</td>
</tr>
<tr>
<td>III.7</td>
<td>26</td>
<td>Started walking at 3 y</td>
<td>Spastic and ataxic gait. Wheelchair bound at 16 y. Pyramidal signs in lower limbs. Normal intelligence</td>
</tr>
<tr>
<td>III.12</td>
<td>33</td>
<td>Abnormal gait, pes cavus, nystagmus, and spasticity noted at 5 y</td>
<td>Requires crutches. Pyramidal signs in lower limbs. Mild tremor in upper limbs. Horizontal nystagmus. Normal intelligence</td>
</tr>
<tr>
<td>III.13</td>
<td>34</td>
<td>Started walking at 20 mth. Abnormal gait, nystagmus, spasticity, and cerebellar signs noted at 4 y</td>
<td>Wheelchair bound. Pyramidal signs in lower limbs. Mild cerebellar signs in upper limbs. Normal intelligence</td>
</tr>
<tr>
<td>III.22</td>
<td>30</td>
<td>Nystagmus and abnormal gait noted at 3 y</td>
<td>Abnormal gait. Pyramidal signs in lower limbs. Horizontal nystagmus. Normal intelligence</td>
</tr>
<tr>
<td>III.25</td>
<td>13</td>
<td>Total absence of abnormal signs</td>
<td>Detailed in text</td>
</tr>
<tr>
<td>IV.3</td>
<td>14</td>
<td></td>
<td>Detailed in text</td>
</tr>
<tr>
<td>IV.5</td>
<td>8</td>
<td></td>
<td>Detailed in text</td>
</tr>
<tr>
<td>IV.18</td>
<td>1</td>
<td>Born at 30 weeks' gestation, birth weight 1800 g. Nystagmus first noted at 11 mth</td>
<td>At 1 y hypotonia, left Babinski's sign, horizontal nystagmus.</td>
</tr>
</tbody>
</table>

NE = not examined.

Table 2 Clinical features in heterozygous females.

<table>
<thead>
<tr>
<th>Case</th>
<th>Status</th>
<th>Age at study (y)</th>
<th>Abnormal gait</th>
<th>Spastic paraparesis</th>
<th>Pes cavus</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.4</td>
<td>OC</td>
<td>NE</td>
<td>++ +</td>
<td></td>
<td>-</td>
<td>Required wheelchair at 50 y</td>
</tr>
<tr>
<td>II.2</td>
<td>OC</td>
<td>46</td>
<td>++ +</td>
<td>++</td>
<td>+</td>
<td>Abnormal gait from 20 y</td>
</tr>
<tr>
<td>II.5</td>
<td>OC</td>
<td>55</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>II.6</td>
<td>OC</td>
<td>53</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>III.4</td>
<td>R</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>III.5</td>
<td>R</td>
<td>28</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>III.9</td>
<td>R</td>
<td>20</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>III.14</td>
<td>R</td>
<td>24</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>III.15</td>
<td>R</td>
<td>23</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>III.24</td>
<td>R</td>
<td>23</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

NE = not examined, OC = obligate carrier, R = female considered at risk of carrying the disease on the basis of her status at DXS17.

CASE 3
Patient III.25, born in 1976, did well during the first 12 years of life. His intelligence and schooling were normal; his gait was also normal and he played sport regularly. Extensive neurological evaluation at 13 years of age, however, showed evidence of mild involvement of the pyramidal tract with very brisk reflexes of the lower limbs without Babinski's sign.

CASE 4
Patient III.5, born in 1950, is an obligate carrier as she is the mother of the proband (IV.3) and the sister of two affected males (III.3 and III.7). At 38 years of age, her gait and intelligence were normal but she had pes cavus and extensive neurological evaluation showed evidence of brisk deep tendon reflexes of the lower limbs with bilateral Babinski's sign.

CASE 5
Patient III.9 is the maternal aunt of the proband, born in 1968. She did well during the first years of life and her intelligence and coordination were normal. However, she had an abnormal gait with pes cavus, spastic para-
X linked spastic paraplegia (SPG2): clinical heterogeneity at a single gene locus

Table 3 Pairwise lod scores.

<table>
<thead>
<tr>
<th>Locus</th>
<th>Probe</th>
<th>0.0</th>
<th>0.01</th>
<th>0.02</th>
<th>0.03</th>
<th>0.04</th>
<th>0.05</th>
<th>0.06</th>
<th>0.07</th>
<th>0.08</th>
<th>0.1</th>
<th>0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DXS17</td>
<td>S9</td>
<td>-∞</td>
<td>4.71</td>
<td>4.91</td>
<td>4.98</td>
<td>5.00</td>
<td>4.99</td>
<td>4.96</td>
<td>4.91</td>
<td>4.86</td>
<td>4.73</td>
<td>3.85</td>
</tr>
<tr>
<td>DXYS1</td>
<td>PDP4</td>
<td>-∞</td>
<td>0.64</td>
<td>1.17</td>
<td>1.45</td>
<td>1.63</td>
<td>1.76</td>
<td>1.84</td>
<td>1.90</td>
<td>1.95</td>
<td>1.99</td>
<td>1.92</td>
</tr>
<tr>
<td>DXS3</td>
<td>P19.2</td>
<td>-∞</td>
<td>1.37</td>
<td>1.89</td>
<td>2.15</td>
<td>2.32</td>
<td>2.42</td>
<td>2.49</td>
<td>2.54</td>
<td>2.57</td>
<td>2.58</td>
<td>2.26</td>
</tr>
<tr>
<td>DXS52</td>
<td>St14</td>
<td>-∞</td>
<td>-4.68</td>
<td>-2.61</td>
<td>-0.91</td>
<td>-0.04</td>
<td>-0.01</td>
<td>-0.02</td>
<td>-0.03</td>
<td>-0.04</td>
<td>-0.05</td>
<td>-0.06</td>
</tr>
</tbody>
</table>

In subject III.9 (a female expressing the disease) recombination occurred between DXYS1 and DXS3–DXS17. In subject III.13 (an affected male) recombination occurred between DXS3 and DXS17.

Negative lod score values were obtained with probe St14 excluding the disease from close proximity to the DXS52 locus (Z = -2 at \(\theta = 0.12 \)).

The location score method was used to estimate the position of the disease locus. The maximum likelihood estimate for location of the SPG2 gene was between DXS17 and the telomere (maximum location score of 5.22 at 3.4 cm from DXS17) (fig 2). Finally, multipoint linkage analysis allowed the placing of the disease locus with respect to polymorphic loci: cen-DXYS1-DXS3-DXS17-SPG2-tel.

Discussion

In subject III.9 (a female expressing the disease) recombination occurred between DXYS1 and DXS3–DXS17. In subject III.13 (an affected male) recombination occurred between DXS3 and DXS17.

Negative lod score values were obtained with probe St14 excluding the disease from close proximity to the DXS52 locus (Z = -2 at \(\theta = 0.12 \)).

The location score method was used to estimate the position of the disease locus. The maximum likelihood estimate for location of the SPG2 gene was between DXS17 and the telomere (maximum location score of 5.22 at 3.4 cm from DXS17) (fig 2). Finally, multipoint linkage analysis allowed the placing of the disease locus with respect to polymorphic loci: cen-DXYS1-DXS3-DXS17-SPG2-tel.

Discussion

In subject III.9 (a female expressing the disease) recombination occurred between DXYS1 and DXS3–DXS17. In subject III.13 (an affected male) recombination occurred between DXS3 and DXS17.

Negative lod score values were obtained with probe St14 excluding the disease from close proximity to the DXS52 locus (Z = -2 at \(\theta = 0.12 \)).

The location score method was used to estimate the position of the disease locus. The maximum likelihood estimate for location of the SPG2 gene was between DXS17 and the telomere (maximum location score of 5.22 at 3.4 cm from DXS17) (fig 2). Finally, multipoint linkage analysis allowed the placing of the disease locus with respect to polymorphic loci: cen-DXYS1-DXS3-DXS17-SPG2-tel.

In subject III.9 (a female expressing the disease) recombination occurred between DXYS1 and DXS3–DXS17. In subject III.13 (an affected male) recombination occurred between DXS3 and DXS17.

Negative lod score values were obtained with probe St14 excluding the disease from close proximity to the DXS52 locus (Z = -2 at \(\theta = 0.12 \)).

The location score method was used to estimate the position of the disease locus. The maximum likelihood estimate for location of the SPG2 gene was between DXS17 and the telomere (maximum location score of 5.22 at 3.4 cm from DXS17) (fig 2). Finally, multipoint linkage analysis allowed the placing of the disease locus with respect to polymorphic loci: cen-DXYS1-DXS3-DXS17-SPG2-tel.

Discussion

In subject III.9 (a female expressing the disease) recombination occurred between DXYS1 and DXS3–DXS17. In subject III.13 (an affected male) recombination occurred between DXS3 and DXS17.

Negative lod score values were obtained with probe St14 excluding the disease from close proximity to the DXS52 locus (Z = -2 at \(\theta = 0.12 \)).

The location score method was used to estimate the position of the disease locus. The maximum likelihood estimate for location of the SPG2 gene was between DXS17 and the telomere (maximum location score of 5.22 at 3.4 cm from DXS17) (fig 2). Finally, multipoint linkage analysis allowed the placing of the disease locus with respect to polymorphic loci: cen-DXYS1-DXS3-DXS17-SPG2-tel.

In subject III.9 (a female expressing the disease) recombination occurred between DXYS1 and DXS3–DXS17. In subject III.13 (an affected male) recombination occurred between DXS3 and DXS17.

Negative lod score values were obtained with probe St14 excluding the disease from close proximity to the DXS52 locus (Z = -2 at \(\theta = 0.12 \)).

The location score method was used to estimate the position of the disease locus. The maximum likelihood estimate for location of the SPG2 gene was between DXS17 and the telomere (maximum location score of 5.22 at 3.4 cm from DXS17) (fig 2). Finally, multipoint linkage analysis allowed the placing of the disease locus with respect to polymorphic loci: cen-DXYS1-DXS3-DXS17-SPG2-tel.
gene for complicated HSP on the proximal long arm of the X chromosome (Xq21). Since uncomplicated forms of the disease (that is, isolated spasticity of the lower limbs) have been previously shown to be linked to the same locus (Z = 4.48 and Z = 4 at 0 = 0 for DXS287 and DXS17 respectively), our results along with those of Goldblatt et al9 raise the difficult issue of either allelism at the SPG2 locus or close proximity of two disease genes, one for pure hereditary spastic paraplegia (SPG2) and another one for a complicated form of HSP.

In connection with this, it is worth remembering that remarkable heterogeneity has also been reported at the SPG1 locus. For this reason, some authors17,18 tend to favour the view that different mutations at the same locus account for both the complicated spastic paraplegia and MASA syndrome phenotypes (mental retardation, aphasia, shuffling gait, and adducted thumbs)17 whose gene has been mapped to the same Xq28 region.18,19

More generally, it is tempting to hypothesise that different mutations of a single gene could account for the remarkable clinical heterogeneity of X linked hereditary spastic paraplegias, as recently shown for autosomal and X linked genetic diseases.20

We thank Alan Strickland for his help in preparing this manuscript.

X linked spastic paraplegia (SPG2): clinical heterogeneity at a single gene locus.

D Bonneau, J M Rozet, C Bulteau, M Berthier, R Mettey, R Gil, A Munnich and M Le Merrer

J Med Genet 1993 30: 381-384
doi: 10.1136/jmg.30.5.381

Updated information and services can be found at:
http://jmg.bmj.com/content/30/5/381

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/