A 5′ splice site mutation in fucosidosis

Magali Williamson, Helen Cragg, Judith Grant, Keith Kretz, John O’Brien, Patrick J Willems, Elisabeth Young, Bryan Winchester

Abstract
Fucosidosis is a rare, autosomal recessive, lysosomal storage disease, resulting from a deficiency of the enzyme α-fucosidase (EC 3.2.1.51). It is characterised clinically by progressive mental and motor deterioration, growth retardation, coarse facies, and recurrent infections, but the course of the disease is variable. The gene encoding lysosomal α-fucosidase has been mapped to the short arm of chromosome 1 at position 1p34.1–36.1 and has been called FUCAl. Two mutations causing disease have been described previously, a C→T change in exon 8 giving rise to a premature, in-frame TAA stop codon, and a deletion of at least two exons from the 3′ end of the gene.

In this paper we present evidence that a homozygous G→A transition in the first position of the 5′ splice site of intron 5 of FUCAl is the disease causing mutation in a 9 year old child of distantly related parents. A new banding pattern was detected in the patient by Southern blotting of genomic DNA using TaqI restriction and a cDNA FUCAl probe. The patient was homozygous for this pattern. Three sibs with α-fucosidase activity below the normal reference range and both parents were heterozygous. This pattern was not detected in 26 other fucosidosis patients and has not been found in any controls. The mutation was localised by a combination of restriction mapping using different cDNA probes, single stranded conformational polymorphism analysis of exons and flanking regions amplified by the polymerase chain reaction, and by direct sequencing of the amplified sequence. In view of the nature of the mutation, its cosegregation with the disease mutation and its absence in controls, it is probable that this 5′ splice site mutation causes fucosidosis in this child.

Fucosidosis is a rare, autosomal recessive, lysosomal storage disorder caused by a deficiency of the enzyme α-L-fucosidase (EC 3.2.1.51). The deficiency of α-L-fucosidase results in the accumulation in lysosomes of tissues and excretion in urine of oligosaccharides, glycoasparagines, and glycolipids containing fucose. A review of 77 patients with fucosidosis has recently been published.2 The clinical picture of fucosidosis is heterogeneous but patients generally show progressive mental and motor deterioration, growth retardation, coarse facies, recurrent infections, dysostosis multiplex, angiokeratoma corporis diffusum, visceromegaly, and seizures.3

The gene encoding human α-fucosidase has been mapped to the short arm of chromosome 1 in 1p34.1–36.1 and has been called FUCAl.4 The cDNA sequence is 2053 bp long with an open reading frame of 461 amino acids, a proposed signal peptide of 22 amino acids, and four potential glycosylation sites.5 The α-fucosidase gene is composed of eight exons spanning 23 kb of DNA and the genomic structure, including all the intron/exon boundaries, has been published.6

To date, two mutations that result in fucosidosis have been described. A single base change, C→T, which obliterates an EcoRI site in the cDNA has been identified in seven patients from five unrelated sibships.2378 This transition gives rise to a premature, in-frame TAA stop codon encoding a truncated fucosidase protein. The second mutation, which is responsible for fucosidosis in two Algerian sibs, is a deletion of at least two exons at the 3′ end of the α-fucosidase structural gene.2 The existence of at least two other mutations is indicated by haplotype analysis based on restriction fragment length polymorphisms.6 Extensive Southern blot analysis in our and other laboratories has not shown any other major gene deletions or insertions in FUCAl of patients, thus indicating that the majority of cases of fucosidosis are most likely caused by point mutations.

We report here on the characterisation of a point mutation in the 5′ splice site of exon 5 of a new patient with fucosidosis. We have used Southern blot analysis and single strand conformation polymorphism (SSCP) analysis of PCR amplified sequences to localise the mutation and direct sequencing to characterise the nature of the mutation.

Materials and methods

CLINICAL DETAILS
The proband (SB) was born after a normal term delivery in Zambia to distantly related Asian parents. Birth weight was 3800 g. There are five normal older sibs. Her early milestones were normal. She smiled at 8 weeks, sat unsupported at 8 months, and at 16 months was walking steadily and used three words appropriately. From the age of 18 months she gradually became uninterested in toys, started mouthing and casting objects, and her language skills deteriorated to grunts and pointing. Her gait became progressively more unsteady. The family moved to the UK in 1989. At 61 years she had no words but waved ‘bye bye’ and pointed to indicate her needs.
A $5'$ splice site mutation in fucosidosis

Figure 1 α-fucosidase cDNA probes. The numbers correspond to the different exons of FUCAl.

She could finger feed a biscuit but could not use a spoon. She walked on a broad gait and fell backwards after every few steps. She was not toilet trained. Her weight and height were below the 3rd centile. Head circumference was on the 5th centile. She had coarse facial features, protruding tongue, kyphosis, contracture of the right elbow, and hirsutism. There was no hepatosplenomegaly or skin lesions. Breathing was noisy owing to upper airway obstruction and a Harrison's sulcus was visible. She had a thin muscle bulk with normal tone and reflexes. She continuously mouthed and cast objects and had no constructive play. There was no corneal clouding and vision was normal. Distraction testing indicated hearing thresholds raised at 50 dB bilaterally with flat tympanograms. Currently, aged 9 years, she attends a school for children with severe learning difficulties. Her walking has deteriorated further. She wears a helmet to prevent head injury and arm splints to deter hand chewing. A first cousin died in Zambia aged 4 years. She is reported to have had identical physical and developmental problems to SB.

ASSAY OF LEUCOCYTE α-FUCOSIDASE
Leucocytes were isolated from heparinised blood as described previously.5 α-fucosidase activity was measured in sonicated cell extracts by incubating 5 μl of the extract with 95 μl of H,0 and 100 μl of 1-6 mmol/l 4-methylumbelibliferyl α-L-fucopyranoside in citrate-phosphate buffer, pH 4.5 (Melford Laboratories, Haverhill, Suffolk, UK) for 30 minutes at 37°C. The reaction was stopped by the addition of 2-3 ml of 0-25 mol/l glycine/NaOH, pH 10-4 and the fluorescence of the released 4-methylumbelliferone was read at 440 nm using an excitation wavelength of 365 nm. One unit of activity equals a rate of hydrolysis of 1 mmol per hour per mg of protein. Protein was measured using the method of Lowry et al55 with human serum albumin as the standard.

α-FUCOSIDASE cDNA PROBES
Human fucosidase cDNA,11 encoding the major part of FUCAl, was digested with HinII or EcoRI to generate fragments A, B, and C (fig 1). The fragments were separated by electrophoresis in agarose and the DNA extracted from the agarose using 'Geneclean' (BIO 101). The probes were generated by labelling the fragments by the random hexanucleotide procedure12 using [α-32P] dCTP (Amersham International).

SOUTHERN BLOT ANALYSIS
Genomic DNA was isolated from peripheral blood leucocytes by using the guanidinium chloride extraction procedure.13 DNA (10 μg) from members of the index family, 25 controls, and 26 other unrelated fucosidosis patients was digested with Taq1, BglI, or EcoRI restriction endonuclease according to the manufacturer's instructions. The resulting fragments were separated on an 0-8 to 1% agarose gel and transferred to a nylon membrane by standard procedures.14 The blots were then hybridised with the radiolabelled α-fucosidase cDNA probes. Prehybridisation and hybridisations were carried out in 10 × Denhardt's solution, containing 4 × SSC, 50 μg/ml denatured salmon sperm DNA, and 1% (w/v) sodium dodecyl sulphate (SDS) for 16 hours at 65°C. Filters were washed twice for 20 minutes at room temperature in 3 × SSC containing 0-1% (w/v) SDS. This was followed by a higher stringency wash at 65°C for 30 minutes in 0-5 × SSC containing 0-1% (w/v) SDS. The membrane was wrapped in 'cling film' and placed in an X-ray cassette with Kodak Xero-Mat film for 24 hours to a week.

POLYMERASE CHAIN REACTION (PCR) ANALYSIS
Exons 5 and 6 and their flanking regions were amplified by PCR using the primers in the table and fig 2. The primers were synthesised on an Applied Biosystems 381A DNA synthesiser, using DMT-biotin-C6-PA for primer 5 (Cambridge Research Biochemicals Ltd, Northwich, Cheshire, UK), according to the manufacturer's instructions. Genomic DNA (500 ng) in a total volume of 100 μl was denatured at 94°C for 10 minutes, after which 2-5 units of Taq polymerase (Promega) were added and the mixture was held at 54°C for five minutes. This was followed by 30 cycles of one minute at 72°C, one minute at 94°C, and 30 seconds at 54°C. The amplified DNA was analysed by electrophoresis on a 1.5% agarose gel and visualised by staining with ethidium bromide; 20 μl of amplified product was digested with TaqI according to the manufacturer's instructions (NBL, Framlington, Northumberland, UK) and analysed by electrophoresis on a 2% agarose gel followed by staining with ethidium bromide.

SINGLE STRANDED CONFORMATIONAL POLYMORPHISM (SSCP) ANALYSIS
Exons 5 and 6 and the exon 5/intron 5 boundary of the α-fucosidase gene were amplified by PCR using the primers and conditions already described. The reaction was carried out in a

Table:

<table>
<thead>
<tr>
<th>Primer No</th>
<th>Sequence</th>
<th>Exon/intron</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5'TAA GCA TGA TGC CAG GCT TG</td>
<td>Intron 5</td>
</tr>
<tr>
<td>2</td>
<td>5'AGG AGA TAC CAG TCC GGG AT</td>
<td>Exon 5</td>
</tr>
<tr>
<td>3</td>
<td>5'GAT GAG GGT GTA AAT GGA</td>
<td>Exon 5</td>
</tr>
<tr>
<td>4</td>
<td>5'GAA ATG ATT TCA GAT TCT GC</td>
<td>Exon 5</td>
</tr>
<tr>
<td>5</td>
<td>5'CCT GGG CCT ATC GTA GTG AG</td>
<td>Exon 5</td>
</tr>
<tr>
<td>6</td>
<td>5'TAT AAA ATA ATG CAT ACT GCA TGT TA</td>
<td>Intron 5</td>
</tr>
</tbody>
</table>

* Biotinylated at the 5' end.
volume of 50 μl using 500 ng of DNA, 25 pmol of each primer, 0-2 mmol/l dCTP, 2 mmol/l dATP, dGTP, dTTP, 0-1 μl of 32P dCTP. The amplified products were analysed by electrophoresis of 10 μl on a 1.5% agarose gel, followed by ethidium bromide staining. Five μl of the PCR product was diluted with 40 μl of 10 mmol/l EDTA, 0.1% SDS and 5 μl of this was further diluted with 5 μl of gel loading buffer (80% formamide/89 mmol/l Tris/2 mmol/l EDTA/89 mmol/l boric acid, pH 8.0, with bromophenol blue and xylene cyanol added as indicator dyes). The DNA samples were denatured by heating at 95°C for three minutes and then placed on ice. Aliquots of 2.5 μl were loaded onto a non-denaturing 6% polyacrylamide gel (Proteogel Lablogic) containing 5% glycerol. Electrophoresis was carried out at 4°C for 12 hours at 360 volts and then the gels were dried and exposed to x-ray film without intensifying screen.

SEQUENCING

The exon 5/intron 5 boundary was amplified by PCR using primers 5 and 6 (table, fig 2) under the conditions already described. The reaction was carried out in a volume of 100 μl containing 5 pmol each of primer, 2 mmol/l dNTPs, reaction buffer (Promega), and 500 ng of patient DNA. Fifty μl of the amplified product was mixed with 30 μl of magnetic Dynal M-280 streptavidin beads (Dynal, UK) and incubated at room temperature for five minutes and then placed in a magnetic rack. The beads with the bound double stranded amplified product were then incubated with 0.15 mol/l NaOH for five minutes to produce single stranded molecules. The biotinylated single strand attached to the beads and the unbiotinylated single strand in the supernatant were separated. Two volumes of absolute etha-

Figure 2 Primers used in the location of the new TaqI mutation.

Results

α-L-FUCOSIDASE ACTIVITY

The α-L-fucosidase activity in the leucocytes from members of the family is shown in fig 3. No activity could be detected in the patient (SB) consistent with the diagnosis of fucosidosis. Both parents had levels of activity at the lower end of the control reference range, and three of the five sibs had activity lower than normal. Another sib, SaB, had similar activity to her parents and one sib, DB, had normal activity.

SOUTHERN BLOT ANALYSIS

Genomic DNA was extracted from white blood cells of SB, digested with four different restriction endonucleases, and analysed by Southern blotting using probes A, A + B, B, and C. No abnormalities were seen after digestion with BglIII, EcoRI, or PvuII. The normal pattern obtained with EcoRI excludes both the mutation obliterating an EcoRI site in exon 8 and the deletion at the 3’ end, which is characterised by an extra junction fragment of 12 kb. SB was homozygous for the 12.0 kb allele of the BglII RFLP and the 7.0 kb allele of the PvuII RFLP (haplotype 1-1). Almost complete linkage disequilibrium has been found between these two polymorphisms in North American Caucasians but a significantly lower disequilibrium was found in Belgian Caucasians. The two sibs with a 3’ deletion of FUCAI also had haplotype 1-1.

When TaqI digested genomic DNA from SB was analysed using probe B, the 5.0 kb band which had been observed in all controls disappeared and an extra 1.8 kb band was observed (fig 4). SB appears to be homozygous for a new TaqI restriction site, which has not been detected in any control samples or other patients by us or others. The parents showed both the normal 5.0 kb and the aberrant 1.8 kb band. The new TaqI restriction site cosegregated with the fucosidosis allele in the family of SB (fig 3). The abnormal TaqI restriction pattern was not present in 26 additional unrelated fucosidosis patients, nor in the control population (n = 25). The parents and three of
A 5' splice site mutation in fucosidosis

Figur 4. Southern blot analysis of TaqI digested DNA from the family of the patient hybridised to α-fucosidase cDNA probe B. F. father; M, mother; SB, patient; AB, DB, HB, NB, and SaB, sibs of patients; C, control.

The patient's sibs were heterozygous for this TaqI restriction pattern. The sib DB, who had the highest activity, and the sib SaB, whose activity was similar to that of her parents, were not heterozygous for the TaqI polymorphism.

LOCALISATION OF THE NEW TaqI RESTRICTION SITE

The sequence change producing the new TaqI site appears to be associated with a T allele causing a deficiency of α-fucosidase. The new TaqI site results in the loss of a 5.0 kb band and the generation of a new 1.8 kb band. It was not possible to localise the new TaqI site by direct restriction mapping because the sizes of some of the intronic sequences are not known. However, it was possible to deduce which section of the gene corresponded to the 5 kb fragment by the use of probes that cover different regions of the cDNA sequence and knowledge of the sequence. The new TaqI site was not observed after hybridisation with probe A which covers exons 1, 2, and part of 3, indicating that it is not in this region of the gene. The 5.4 kb TaqI band is much less intense than other bands when probe B is used for hybridisation but of comparable intensity when probe A + B is used. The HincII site separating probes A and B is in exon 3, 5 bp upstream from the 3' end of exon 3 (fig 1). This suggests that the 5.4 kb fragment spans exon 3. The 5.4 kb fragment is unaffected in patient SB, thereby excluding exon 3 as the location of the new TaqI site. Probe C, which covers the 3' end of exon 8 and the 3' non-coding region, only hybridises to the 2.4 kb fragment. As no TaqI sites are present in exon 7, intron 7, and exon 8, according to the published sequence the 2.4 kb fragment must span exons 7 and 8. As the 2.4 kb fragment is intact in patient SB, the new TaqI site cannot be in exons 7 and 8 or intron 7. The absence of the 2.4 kb TaqI fragment in patients with the 3' deletion that includes exons 7 and 8 supports this conclusion. Exon 4 can also be excluded for the following reason. Exon 4 is only 106 bp long and there is a TaqI site 158 bp upstream. As the new TaqI site has to be 1.8 or 3.2 kb from an existing TaqI site, it cannot be in or flanking exon 4. For these reasons the 5 kb TaqI fragment in normal DNA, which is split by the new TaqI site, must span exon 5 or 6. This was investigated by amplifying exons 5 and 6 and their flanking regions from the patient and controls by PCR (fig 2) and analysing the amplified molecules for sequence differences.

ANALYSIS OF EXON 6

Primers complementary to 5' and 3' intronic sequences flanking exon 6 (primers 1 and 2 in the table and fig 2) were used to prepare amplified DNA from SB and a control. Both amplification products failed to cut with TaqI, indicating that the new TaqI site in SB is not in exon 6. Further evidence that a new TaqI site or another sequence change was not present in exon 6 of SB was obtained by SSCP analysis of the amplified products from SB and controls (fig 5A). Confirmation of the identity of the sequences of exon 6 and its flanking regions in SB and controls was obtained by direct sequencing of the amplified products and comparison with the published sequence.

ANALYSIS OF EXON 5

DNA from the patient and controls was amplified using primers specific for the 5' and 3' ends of exon 5 (primers 3 and 4 in the table and fig 2). There are no TaqI sites in the 5' and 3' ends of exon 5 covered by the primers, according to the published sequence. The amplified material from both sources consistently failed to be cut by TaqI, suggesting that the new TaqI site was not in exon 5. SSCP analysis of amplified exon 5 from SB and controls also indicated that the sequence of exon 5 was the same in the patient and controls. This was confirmed by direct sequencing of the amplified products.

ANALYSIS OF INTRON 5

To amplify across the 5' splice site of intron 5, primers were synthesised specific for the middle of exon 5 and a sequence in intron 5 (primers 5 and 6 in the table and fig 2), which should result in a 269 bp product. The amplified product from controls did not cut with TaqI, whereas the product from SB was cut into two unequal fragments (fig 6). As the exonic portion of the PCR product was 201 bp.
TaqI site of TCGA at the exon 5/intron 5 boundary and is consistent with the approximate sizes of the digestion fragments obtained with TaqI from the amplified material.

Discussion

Our patient with fucosidosis does not have either of the two previously described disease causing mutations in the α-fucosidase gene, the 3' deletion or the premature termination signal in exon 8. However, she is homozygous for a new TaqI polymorphism owing to a g→a transition at position +1 of the exon 5/intron 5' splice site. This caused the loss of a 5.0 kb band and the appearance of a new 1.8 kb band. It is assumed that a 3.2 kb band is also generated but that it is undetectable on the blot, either because it comigrates with the 3.3 kb band, or more likely, because it is an intronic sequence and therefore not detectable with the cDNA probe. The absence of this sequence change in controls and its cosegregation with the enzyme deficiency in the family strongly suggest that it is the disease causing mutation in this child. The sequence gt is highly conserved at the 5' splice site of mammalian introns.\(^{17-19}\) A mutation of the g at the +1 position of a 5' splicing site consistently leads to abnormal processing of messenger RNA, either exon skipping or activation of a cryptic splice site.\(^{20}\) 5' splice site mutations have been reported in genes for several other human lysosomal enzymes. These mutations lead to an almost complete deficiency of the enzyme when they occur homozygously in patients. A g→a transition in the 5' splice site of intron 2 of the α chain of β-hexosaminidase has been found in a compound heterozygote with Tay-Sachs disease.\(^{21}\) Truncated mRNA lacking exon 2 is produced along with normal length mRNA from the normal allele. One of the two major mutations responsible for Tay-Sachs disease in Ashkenazi Jews is a g→c transversion in the 5' splice site of intron 12 of the same gene, which leads to no detectable mRNA.\(^{22-24}\) In metachromatic leucodystrophy, g→a transitions in the +1 5' splice site of introns 25 and 39 are present in mutant arylsulphatase A alleles associated with the more severe, early onset, late infantile form of the disease. A g→t transversion in the +1 position of the 5' splice site of intron 6 of α-galactosidase resulted exclusively in skipping of exon 6 in a patient with Fabry disease.\(^{25}\) A patient with Gaucher disease was also found to have a 5' splice site mutation in intron 2 of the β-glucocerebrosidase gene.\(^{21}\)

The possible consequence of a mutation in an intron 5' splice site can be assessed semi-quantitatively by comparing the statistical estimates for the probable use of the normal and mutant splice sites.\(^{19}\) Based on tc = -2 to +6 consensus sequence for a 5' splice site, the g→a transition in the exon 5 donor splice site of α-fucosidase would cause a decrease in the likelihood score from 86 to 68. All the other 5' splice site mutations in lysosomal enzyme genes led to a very similar drop in the calculated likelihood score for the use of the splice site. This

Figure 5 Single stranded conformational polymorphism analysis of amplified exons 5 and 6. (A) Exon 6. 1, 2, and 5, controls; 3, patient SB; 4, fucosidosis patient with a different exon 6 mutation (positive control). (B) Exon 5. 1 and 3, controls; 2, patient SB; 4, fucosidosis patient with a different exon 5 mutation (positive control). See Materials and methods and results for details.

Figure 6 TaqI digestion of PCR amplified exon 5, 1 and 2 and 3 and 4: controls, respectively undigested and digested with TaqI; 5 and 6 and 9 and 10: other fucosidosis patients, undigested and digested; 7 and 8, patient SB, undigested and digested.
strongly supports our suggestion that the mutation at the +1 position of the 5' splice site of intron 5 is the disease causing mutation in our patient. It would be expected to lead to incorrect processing of mRNA and a deficiency of functional enzyme. Unfortunately it has not been possible to study the mRNA or enzymic protein in this family.

To date only three disease causing mutations have been fully characterised in cases of fucosidosis. Therefore it is not yet possible to correlate the genotype with clinical phenotype. Like the patients with the 3' deletion or premature stop codon in exon 8, our patient has negligible α-fucosidase activity in her white blood cells and clinical symptoms were detected between 1 and 2 years of age. Historically fucosidosis was classified into type 1, which was characterised by a rapidly progressive neurological deterioration and death before the age of 5 years, and type 2, which had a slower progression. However, patients homozygous for the mutation in exon 8 have been classified as both type 1 and type 2 on clinical criteria. Therefore it is possible that other factors contribute to the course of the disease.

HC and MW thank the Child Health Research Appeal Trust and the Science and Engineering Research Council (UK) respectively for postgraduate scholarships. The authors thank Dr Ian Young (Trent Sub-Regional Genetic Service, Nottingham, UK) for his help in the clinical investigation of the patient and Mr P Rutland for synthesising the oligonucleotides. The support of Dr S Malcolm and colleagues in the Molecular Genetics Unit of the Institute of Child Health is gratefully acknowledged.

Figure 7 Sequencing of part of exon 5 and 5' flanking region, amplified by PCR showing the g→a substitution in SB.

A 5' splice site mutation in fucosidosis.

M Williamson, H Cragg, J Grant, K Kretz, J O'Brien, P J Willems, E Young and B Winchester

doi: 10.1136/jmg.30.3.218