Alternative splicing of dystrophin mRNA complicates carrier determination: report of a DMD family

U Lenk, S Demuth, U Kräfft, R Hanke, A Speer

Abstract
Carrier determination is important for genetic counselling in DMD/BMD families. The detection of altered PCR amplified dystrophin mRNA fragments owing to deletions, insertions, or point mutations has increased the possibilities of carrier determination. However, problems may occur because of alternative splicing events. Here we present a family with a DMD patient characterised by a deletion of exons 45 to 54. At the mRNA level we detected a corresponding altered fragment which served for carrier determination. The mother and the sister of the patient showed the same altered dystrophin mRNA fragment as the patient and are therefore carriers. In the mother two additional altered dystrophin mRNA fragments were detectable, obviously resulting from alternative splicing in the normal allele. The grandmother and two other related females of the patient possess only the normal mRNA fragment. In a further female we detected an altered fragment owing to an mRNA deletion of exon 44. This fragment is created either by alternative splicing or a new mutation. Therefore, the carrier status of this female is still ambiguous indicating problems in carrier determination by the method of dystrophin mRNA analysis.

Reactions bridging deletions or duplications result in altered PCR products. Here we report a DMD family in which carrier determination using this method was complicated by the presence of alternative splicing events.

Material and methods
REVERSE TRANSCRIPTION AND NESTED PCR
Total RNA was prepared from peripheral blood lymphocytes1-6 and about 500 ng of total lymphocyte RNA were transcribed using the primers DMD N7b and DMD 8b. Nested PCR was performed as described by Roberts et al10: 10 µl of the PCR assay was electrophoresed in a 2% agarose gel.

PRIMER SEQUENCES

Set 7
DMD N7a TCATAGCAAGAGACAGAGCAG
DMD N7b CTCTTGTGATCTCTCAAGGTCT
DMD N7c GTGAGAAGGGTGAGACGTC
DMD N7d ACTTGATCAAGCAGAAAGC

Set 8 (10)
DMD 8a CTAGAAATGGACATTTTCCTTG
DMD 8b CTGAGGACGGCCTCTCTGG
DMD 8c CTGCTCTGGAGATTTCAAC
DMD 8d GGGCTCTGGTAGGATTTTCT

DIRECT SEQUENCING OF PCR PRODUCTS
Nested PCR products were purified from 2% agarose gels using USBiolene clean MP (USB) and sequenced with fmol DNA Sequencing System (Promega) using 32P-γATP labelled primer DMD N7c.

Results
Fig. 1 shows the pedigree of the DMD family requesting genetic counselling. A deletion of exon 45 to 54 inclusive was identified in patient III-5 by Southern transfer/hybridisation and PCR. A junction fragment to be used for carrier determination was not detectable. Therefore we used primer sets 7 and 8 covering exons 43 to 51 and 51 to 58 respectively for dystrophin mRNA analysis.

PCR products resulting from set 7 amplifications are summarised in fig. 2. For the DMD patient III-5, who is deleted for exon 51, the target sequence of primers N7b,d, no PCR product is visible. The females II-2, II-1, II-4, II-1, II-6, and III-8 show a normal full sized fragment of 1271 bp. In the mother (II-2) of the patient two additional fragments of 797 bp and 611 bp occur. By sequencing we identified
Alternative splicing of dystrophin mRNA complicates carrier determination: report of a DMD family

Figure 1 Pedigree of the DMD family requesting genetic counselling. Genomic DNA of patient III-5 was analysed by Southern transfer/hybridisation with cDNA probes cf56a,b and by PCR covering exons 41 to 55. A DNA deletion of exons 45 to 54 was detectable. Family members I-2, II-2, II-4, III-2, III-5, III-6, and III-8 were analysed by nested amplification of reverse transcribed mRNA (RT-PCR).

Figure 2 Products of nested RT-PCR spanning exons 43 to 51 (set 7, see also diagram in fig 7) shown in an ethidium bromide stained 2% agarose gel. For the DMD patient III-5 a signal is missing owing to the deletion of exons 45 to 54. The mother (II-2) has two altered fragments of 797 bp and 611 bp in addition to the full sized 1271 bp product. Female III-6 shows a faint additional band of 1123 bp.

Figure 3 Direct sequence analysis of the 611 bp fragment of female II-2 amplified with primer set 7. The sequencing data indicate splicing of exon 44 into exon 48. Therefore exons 45 to 54 are missing from the mRNA transcript.

Figure 4 Direct sequence analysis of the 1123 bp band of female III-6 amplified with primer set 7. Splicing of exon 43 into exon 45 indicates that exon 44 is missing from the mRNA transcript.

an mRNA deletion of exons 45 to 47 for the 797 bp fragment (fig 3) and an mRNA deletion of exons 45 to 48 for the 611 bp fragment. The female III-6 also shows an altered fragment of 1123 bp. The sequencing data show an mRNA deletion of exon 44 (fig 4).

By use of primers 8b,d and 7a,b, which bridge the DNA deletion, a normal full sized PCR product of 2460 bp is expected (fig 5). All females show a normal full sized fragment. In addition, the mother (II-2) and sister (III-2) of the patient have a smaller fragment of 681 bp. The same fragment is also detectable in the DMD patient. By sequencing we observed an mRNA deletion of exons 45 to 55 (fig 6), which includes one more exon than in the DNA deletion. In addition to this fragment the patient has two other PCR products of 871 bp and 723 bp. Sequencing data indicate that they
are produced from an mRNA deletion of exons 45 to 54 and 44 to 54 respectively.

A summary of all detectable RNA deletions compared to the DNA deletion is given in fig 7.

Discussion

The detection of altered PCR amplified dystrophin mRNA fragments owing to deletions, insertions, or point mutations has created new possibilities for carrier determination in DMD/BMD families. The DMD family presented in this paper underlines a problem in the application of this method for carrier determination because of alternative splicing events.

In the DMD patient of this family, we found an out frame DNA deletion of exons 45 to 54. The same deletion was also detectable at the RNA level. Alternative splicing events on the 5’ or 3’ end of the deletion, extending it by an exon, create two in frame RNA deletions of exons 45 to 55 and 44 to 54 respectively.

For the grandmother (II-2), aunt (II-4), and one cousin (III-8) of the patient, dystrophin mRNA analysis shows no altered fragment resulting from deletion. For the mother (II-2) and sister (II-3) of the patient we detected an mRNA deletion of exons 45 to 55 which extends the DNA deletion by one exon at the 3’ end and was also present in the patient himself. Therefore both females should be treated as carriers. In addition to the disease causing deletion, the mother of the patient has two further in frame mRNA deletions of exons 45 to 47 and 45 to 48 explicable by alternative splicing in the normal allele because she also has the undelated fragment.

The carrier status of the second cousin (III-6) of the patient is still ambiguous. Here we detected an mRNA deletion of exon 44 in addition to the normal fragments. This mRNA deletion could be explained either by alternative splicing or by a new mutation. Although PCR product analyses of exon 44 at the DNA level (data not shown) indicate no strong gene dosage effect the latter possibility cannot be completely excluded.

This family illustrates a problem for the application of dystrophin mRNA analysis for DMD/BMD carrier diagnosis owing to various alternative splicing events and the possibility of new mutations.

We wish to thank Dr K E Davies for helpful discussion. The work was supported by Deutsche Forschungsgemeinschaft.

5 Hugnot JP, Recan D, Jeanpierre M, Kaplan JC, Tolun A. A highly informative CACA repeat polymorphism
Alternative splicing of dystrophin mRNA complicates carrier determination: report of a DMD family

Figure 7. The diagram summarises all detectable DNA and mRNA deletions in the region of exons 43 to 58. Shaded boxes represent exons which were amplified from genomic DNA. Regions of dystrophin transcript which were amplified by RT-PCR are designated beneath the exon diagram (set 7 and set 8). Black bar represents the extent of DNA deletion identified with cDNA probes cfS6a,b and PCR of genomic DNA. Shaded bars designate the extent of all detectable mRNA deletions in the family members tested in our study. Effects on the translational reading frame are indicated to the right of the diagram.
Alternative splicing of dystrophin mRNA complicates carrier determination: report of a DMD family.

U Lenk, S Demuth, U Kräft, R Hanke and A Speer

doi: 10.1136/jmg.30.3.206

Updated information and services can be found at:
http://jmg.bmj.com/content/30/3/206

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/