Chromosome 20 long arm deletion in an elderly malformed man

F Shabtai, E Ben-Sasson, S Arieli, J Grinblat

Abstract
A 46,XY/46,XY,del(20)(q13→q13.33) mosaicism was identified in a 68 year old man who had mild mental retardation and severe malformation of the limbs. The clinical findings of the patient are compared to those of the very few cases of 20q deletion published to date.

(J Med Genet 1993;30:171–3)

Constitutional anomalies of chromosome 20 are rare. A few cases have been reported with ring 20, a few with complete or partial trisomy (mostly of the short arm), and a very few with partial deletion of the short or the long arm. Deletions of the long arm in particular are extremely rare.

We report here an additional case of partial 20q deletion (mosaic) in a malformed man.

Case report
A 68 year old malformed male, of Jewish Iranian origin, was admitted to hospital after a road accident. He was known to be mildly mentally retarded from childhood. He had married a cousin and fathered four normal children. His wife had no record of abortions or abnormal births.

On physical examination the patient had an asymmetrical face, pterygium of both eyes, a low set, malformed left ear, a prominent nasal bridge, prognathism, a short neck, and a flat occiput. Diffuse hirsutism and upper and lower limb malformations were noted. The hands were in an abducted position. On the right hand, congenital absence of the thumb was noted.

X rays of the limbs showed dislocation of the radioulnar joint, deformity of the distal radius, and hypoplasia of the scaphoid and metacarpal bones of the thumb in the right arm. In the left arm, dislocation of the wrist, hypoplastic proximal radius, absence of the distal radius, and congenital absence of the thumb were noted. The right leg was normal, whereas the left one had pes cavus with toe clawing and coxa vara (figs 1 and 2).

The right leg, injured in the accident, was swollen and showed a giant haematoma. During hospitalisation, lymphoedema developed in this leg. Among other studies, CT scan of both legs was performed, and showed lymphoedema secondary to the injury in the right leg. In the left leg, muscular atrophy was noted, subcutaneous and intramuscular adipose tissue replacing muscular tissue. No abnormalities were noted on neurological examination.

A holosystolic murmur was heard over the cardiac apex. Electrocardiogram showed ischaemic changes in the lateral wall, but no symptoms of cardiac disease were present. Echo Doppler studies of the heart showed mild

Figure 1 Malformations of the patient's head and limbs.

Figure 2 X ray of the left hand.
Data on the reported patients with chromosome 20 deletion.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age q- (7)</td>
<td>q13.11→qter</td>
<td>q13.1→qter</td>
<td>q11.23→q13.11</td>
<td>M311→q13.33</td>
<td>Ring q13→qter</td>
</tr>
<tr>
<td>Sex</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M (n=6), F (n=6)</td>
</tr>
<tr>
<td>Clinical findings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6 mth to 27 y</td>
</tr>
<tr>
<td>Short stature</td>
<td>Microcephaly</td>
<td></td>
<td></td>
<td></td>
<td>No distinct dysmorphic syndrome</td>
</tr>
<tr>
<td>Flat occiput</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Microcephaly</td>
</tr>
<tr>
<td>Slanting eyes</td>
<td>Epicanthic folds</td>
<td></td>
<td></td>
<td></td>
<td>Developmental retardation</td>
</tr>
<tr>
<td>Widely spaced nipples</td>
<td>Epicanthic folds</td>
<td>Large face</td>
<td>M</td>
<td></td>
<td>Large fontanelles</td>
</tr>
<tr>
<td>Normal dermatoglyphics</td>
<td>Flat occiput</td>
<td>Prominent, short forehead</td>
<td>68 y</td>
<td></td>
<td>Epicanthus</td>
</tr>
<tr>
<td>Hypogonadism and hydrocele</td>
<td></td>
<td>Hirsutism</td>
<td></td>
<td>M</td>
<td>Strabismus</td>
</tr>
<tr>
<td>Mild heart failure</td>
<td></td>
<td>Short neck</td>
<td></td>
<td></td>
<td>Prominent nasal bridge</td>
</tr>
<tr>
<td>Peripheral vascular disease</td>
<td></td>
<td>Broad nasal bridge</td>
<td></td>
<td></td>
<td>Low set ears</td>
</tr>
<tr>
<td>Cervical spondylisis</td>
<td></td>
<td>Macrostomia</td>
<td></td>
<td></td>
<td>Febrile seizures</td>
</tr>
<tr>
<td>Osteoarthropathy</td>
<td></td>
<td>Low set ears</td>
<td></td>
<td></td>
<td>Heart murmur</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Facial dysmorphism</td>
<td></td>
<td></td>
<td>Adenosine deaminase deficiency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prominent nose</td>
<td></td>
<td></td>
<td>Severe malformation of limbs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lip malformation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Palate malformation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Severe malformations of limbs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3 The 20q deletion (A) and its schematic representation (B).

![Figure 3](image_url)

Figure 4 Schematic representation of the 20q deletions reported in different cases: A Fraisse et al.; B Petersen et al.; C present case, D Peroirio et al.

widening of the left atrium and the left ventricle, moderate thickening of the left ventricular walls, and prolapse of the posterior leaflets of the mitral valve with flail.

The patient was referred for chromosome analysis which, to the best of our knowledge, had not been performed before.

CYTOGENETIC STUDIES

Peripheral blood lymphocytes were cultured by standard methods using GTG, AOG, QFQ, and CBG staining on two occasions during his hospitalisation, each time in triplicate using three different flasks.

One hundred and fifty-four cells were examined altogether. All the cells had 46 chromosomes. In 4% of them, derived from different cultures, a 20q deletion, interpreted as del(20)(q13.11→q13.33), was observed (fig 3). Permission was not obtained for examination of other tissues.

Discussion

Only two cases of 20q deletion, verified by banding techniques, have been reported to date. A case of long arm deletion of an F group chromosome (which might have been 20) was reported before the banding era. With due caution we include this case for comparison in our discussion.

The patients reported by Fraisse et al. and by Petersen et al. were very young children, whereas the patient of Ahmed and our own are in their sixties. Our patient is the only one reported to be mosaic for the deletion, with a very low percentage of abnormal cells (4%) in the presence of severe malformations. The mosaicism may have appeared in quite different proportions in other tissues which, unfortunately, were not available for examination.

In addition, we must consider the well known phenomenon of decreasing mosaicism. Our patient was examined in his later years and the abnormal line might have been present in much higher proportions at a younger age.
Chromosome 20 long arm deletion in an elderly malformed man

Data on the three reported patients and on our own are listed in the table. The patients do not have very much in common, but this is not surprising, considering that different portions of the chromosome 20 long arm are involved in the deletion. Furthermore, as in other cases of deletions, we must consider the influence of hemizygous genes on the undeleted homologue. We have no definition of the missing portion in the case described by Ahmed. In the case reported by Petersen et al, the missing segment was q11.23→q13.11, in that reported by Fraisse et al, q13.11→qter, and in our case q13.11→q13.33 as shown in fig 4.

Both the patient of Fraisse et al and that of Petersen et al had adenosine deaminase (ADA) deficiency, which led Petersen et al to conclude that the ADA gene must be located at 20q13.1. It would have been of interest to test the activity of ADA and other enzymes (s-adenosyl-homocysteine hydrolase, topoisomerase I) in our patient. However, it was felt that the results might prove inconclusive because of the very low proportion of abnormal cells. No immunological deficit was present in our patient.

The chromosomal deletion is very similar in the patient of Fraisse et al and in our patient. However, comparison of the clinical features is complicated by the fact that the first is a baby and the second is an elderly man. Both of them have a short neck, flat occiput, short forehead, low set, large ears, and severe malformations of the limbs. Hirsutism and retardation cannot be evaluated in a baby, but cannot be excluded in the case of Fraisse et al.

Neurological problems as described in other cases were not present in our patient. This may be because of the chromosomal mosaicism which may have different distribution in different tissues and did not affect neurological tissue in our case. Alternatively, it may indicate that the very terminal portion of 20q (q13.33) is related to neurological development. Indeed, the cases reported of ring chromosome 20 presenting minimal terminal deletions of 20p and small terminal deletions of 20q usually suffer arrested mental development and mental retardation and have epileptic seizures.

In conclusion, it seems possible to delineate a 20q- syndrome where the deletion includes the q13.12→q13.32 region, the major features being retardation, severe malformations of the limbs, short neck, flat occiput, and mild facial dysmorphism.

Reports of additional cases will probably help in understanding the particular contribution of each band and subband of the deletion.

The authors wish to thank Mrs Dvora Klar and Ronit Eliav for skilful technical assistance, and the Photographic Department for the photographic work.

Chromosome 20 long arm deletion in an elderly malformed man.

F Shabtai, E Ben-Sasson, S Arieli and J Grinblat

doi: 10.1136/jmg.30.2.171

Updated information and services can be found at:
http://jmg.bmj.com/content/30/2/171

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/