Mutation analysis in Turkish phenylketonuria patients

M Özgüç, İ Özalp, T Coşkun, E Yılmaz, H Erdem, Ş Ayter

Abstract

Forty-four classical PKU patients have been screened for various mutations. The newly identified IVS 10 splicing mutation was found in 32% of the mutant alleles and comprises 74.5% of the mutations that could be typed: 261^Ttyr[→]asn (6.5%), 158^Ttyr[→]sh (2.5%), 252^Ttyr[→]asn (1.1%), 280^{del}-[→]asn (—), and 272^{del}-[→]asn (—) were the other mutations that were screened.

Phenylketonuria (PKU), which results from a deficiency of hepatic enzyme phenylalanine hydroxylase (PAH), is a common inborn error of metabolism. The average incidence of PKU is 1/10,000 in Caucasians. The frequency of PKU in Turkey, based on the results of a newborn screening programme in effect since 1983, is 1/4370. A high rate of consanguineous marriages (21.06%) in Turkey may be a contributing factor to this high incidence.

Molecular genetic studies of the PAH gene began as a result of the cloning of the cDNA. The majority of PKU chromosomes are associated with haplotypes 1–4 as determined by restriction fragment length polymorphisms (RFLPs) created by seven restriction endonucleases.

A previous study of Turkish PKU alleles showed that 40% of the mutant alleles are associated with haplotype 6, a rare haplotype in northern European populations. Various mutations associated with specific RFLP haplotypes have been determined.

Methods

We have investigated 44 patients classified as having classical PKU on the basis of initial plasma phenylalanine concentrations and positive urine ferric chloride test for the following mutations: 280^{del}-[→]asn, 261^Ttyr[→]asn, 252^Ttyr[→]asn, 158^Ttyr[→]sh, 272^{del}-[→]asn, and the recently published splicing defect in intron 10 which creates a Ddel restriction enzyme site.

Preparation of genomic DNA samples

Peripheral blood was withdrawn in 13 mmol/l EDTA and leucocytes were separated by centrifugation and lysed in 10 mmol/l Tris, 10 mmol/l EDTA, 50 mmol/l sodium chloride, and 0.2% sodium dodecyl sulphate in the presence of proteinase K (200 μg/ml) overnight, followed by repeated phenol–chloroform extractions. DNA was then precipitated by ethanol and resuspended in 0.1 ml TE (10 mmol/l Tris-HCl, 0.1 mmol/l EDTA, pH 7.0).

Preparation of polymerase chain reaction

The oligonucleotide primers (50 pmol/l of each) were used with genomic DNA (1 to 0.5 μg) in 1 x Taq DNA polymerase buffer (25 mmol/l Tris-HCl, pH 9.5, 50 mmol/l KCl, 10 mmol/l MgCl₂, 1 mmol/l dithiothreitol, 1 mg/ml bovine serum albumin, 300 μg/ml activated calf thymus DNA), 0.2 μmol/l each deoxynucleotide (dATP, dGTP, dTTP, dCTP), and 2.5 U Taq DNA Polymerase (Amersham) in a total volume of 0.1 ml reaction mixture (table 1).

Results and discussion

Table 2 shows the distribution of various mutations in the 88 PKU mutant alleles. Forty-two percent of the alleles could be identified for a particular mutation and the IVS 10 splicing mutation by itself comprised 75.7% of the mutations identified.

Of 44 patients 11 were homozygous for the IVS 10 splicing mutation, two were homozygous for the codon 261 mutation, and seven

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Conditions for mutation analysis: PCR primers and detection methods (A), allele specific oligonucleotides and hybridisation temperatures (B).</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Primers</td>
<td>Mutation</td>
</tr>
<tr>
<td>Exon 7</td>
<td>5’TGA GCG CTC TCA GTG TGC CT 3’</td>
</tr>
<tr>
<td>5’ATG GAC TGC ACT GGT TTC GCC C 3’</td>
<td>R252W</td>
</tr>
<tr>
<td>5’TGC TCT GTA CGG TGC ACG CC 3’</td>
<td>R252W</td>
</tr>
<tr>
<td>5’TGC AGG GAA TAG TGA TC 3’</td>
<td>R252W</td>
</tr>
<tr>
<td>5’TAG ACA CAG GAA CAG TGA CT C 3’</td>
<td>R252W</td>
</tr>
<tr>
<td>B Mutation</td>
<td>Oligonucleotides</td>
</tr>
<tr>
<td>R252W</td>
<td>5’GCT TTT CTC TCG GGA TTT CTT 3’</td>
</tr>
<tr>
<td>5’GCT TTT CTC TCG GGA TTT CTT 3’</td>
<td>62°C</td>
</tr>
<tr>
<td>5’TAT ACC CCC GAA CCG TGA 3’</td>
<td>54°C</td>
</tr>
</tbody>
</table>

Table 2 Distribution of mutations in the mutant PKU alleles (n=88). IVS 10 splice mutation comprises 75.5% of the mutations that could be determined.

<table>
<thead>
<tr>
<th>Mutation</th>
<th>No of alleles</th>
<th>% of total alleles</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVS 10 splice</td>
<td>28</td>
<td>32</td>
</tr>
<tr>
<td>261</td>
<td>2</td>
<td>6.8</td>
</tr>
<tr>
<td>158</td>
<td>2</td>
<td>2.3</td>
</tr>
<tr>
<td>252</td>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>260</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>272</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Total identified</td>
<td>37</td>
<td>42.2</td>
</tr>
</tbody>
</table>
patients were genetic compounds of whom only one had both alleles identified.

The IVS 10 splicing mutation has been reported to be linked to haplotype 6 in various ethnic groups. We have also found that 11 of the 12 haplotype 6 alleles are associated with this mutation indicating tight linkage between haplotype 6 and the IVS 10 splicing mutation in our population. Moreover, we found two patients homozygous for the IVS 10 splicing mutation who carried haplotype 16, a rare haplotype (figure).

Interestingly, we have one patient with haplotype 2/5 who is a genetic compound of 261/IVS 10 splicing mutation. We also have one other patient of 2/12 haplotype background who is a genetic compound for 261/—mutations. Both patients’ DNA have been checked previously and found not to carry the 408W8-6 frameshift mutation which is tightly linked to haplotype 2 in northern European populations. The remaining four alleles bearing the codon 261 mutation are of haplotype 1 background. The codon 280 mutation reported to be found mostly in Mediterranean populations was not detected in any of the Turkish PKU alleles.

Since the detection of the IVS 10 splicing mutation can be done by a simple non-radioactive test, it is practical to screen our PKU patients for this mutation. Currently over 600 classical PKU patients are being followed at the Department of Paediatric Metabolism.

The low socioeconomic and educational level of the majority of the families, and the prohibitive cost of diet management for our population, are the main causes of demands for prenatal diagnosis. Thus, such direct testing is very valuable.

However, other mutations accounting for the remaining 60% of the mutant alleles have not been established yet and genotype analysis will still be done by RFLP analysis until more population specific mutations are determined.

This work was supported by grant no TAG 0748 Turkish Scientific Council. We thank Dr Arnold Munnich (INSERM U12, Paris) for the gift of primers.

DdeI restriction digest results of amplified DNA from PKU patients. M = X174 HaeIII digest size marker DNA, 1 = PCR product, 2 = homozygous normal, 3 = heterozygote, 4 = homozygous PKU patient (carries DdeI site on both chromosomes).
Mutation analysis in Turkish phenylketonuria patients.

M Ozgüç, I Ozalp, T Coskun, E Yılmaz, H Erdem and S Ayter

doi: 10.1136/jmg.30.2.129

Updated information and services can be found at:
http://jmg.bmj.com/content/30/2/129

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/