LETTERS TO THE EDITOR

Another example favouring the location of BPES at 3q2

Recently in this Journal, de Die-Smulders et al6 reported a father and son both affected with BPES (blepharophimosis, ptosis, telecanthus, epicantus inversus) and carrying a balanced 3;11(q21;q23) translocation in the absence of mental retardation. These findings provided new evidence for the location of the BPES gene at 3q2, as previously suggested by Fukushima et al7 who reported an infant carrying a de novo translocation involving the 3q23 region.

We report on a young girl with mild mental retardation, blepharophimosis, ptosis, telecanthus, epicantus inversus, and a de novo apparently balanced 3;8(q23;p21.1) translocation (fig 1). The patient is microcephalic and mildly mentally handicapped with a few other clinical features such as an arched palate, ears of normal size but low set and abnormally shaped with incompletely folded helices, short neck, bilateral limited elbow pronation and limited thumb aduction, and mild hypotonia. Cytogenetic analysis of the parents' karyotypes indicated a paternal origin of the abnormal chromosome 3. No cell line is available from this patient at present.

Blepharophimosis, microcephaly, and psychomotor developmental delay are common findings among the rare published cases of 3q2 interstitial deletions.1 In patients with BPES, intellectual impairment is only occasional and usually mild.4 It is possible that in our mildly retarded patient with an apparently balanced translocation a submicroscopic deletion may be present. Cytogenetic studies are recommended in BPES, especially if mental retardation or other dysmorphic features are associated. It seems that BPES, as Smith et al9 have suggested, is emerging as another example of a contiguous gene syndrome. Future endocrinological follow up of our patient regarding ovarian function is indicated.

JOSÉ CARLOS CABRAL DE ALMEIDA JUAN C LLEERENA JR JOÃO BARBOSA GONÇALVES NETO Centro de Genética Médica, Instituto Fernandes Figueira (FIOCRUZ), Av Ray Barrosa 716, 22.250-020 Rio de Janeiro, Brazil.

Unidade de Citogenetica Humana, Instituto de Biofísica CCP, CCS-Bloco G, Cidade Universitária, 21.941 Rio de Janeiro, Brazil.

MÓNICA JUNG ROSA RITA MARTINS Instituto Estadual de Endocrinologia e Diabetes, Rio de Janeiro, Brazil.

2 Fukushima Y, Waken K, Nishida T, Neoka Y. Blepharophimosis syndrome and de novo balanced autosomal translocation (46,XY,t(3;4)(q23;p15.2); possible localization of blepharophimosis syndrome to 3q23. Am J Hum Genet 1990;47:26A.

A new approach to prenatal cystic fibrosis carrier screening

Two approaches to prenatal cystic fibrosis screening have been discussed: stepwise and couple screening.11 Menne et al1 recently found that carriers detected by stepwise screening experienced significant levels of stress (detected by a general health questionnaire, GHQ). Stress disappeared after the male partner’s test was reported as ‘normal’.

Couple screening has been said to be superior to stepwise screening because carriers whose partner’s test result is negative are not made anxious while awaiting their partner’s result, nor by the knowledge that their risk is higher than it was before they were tested (pretest risk of having affected child 1/2500, post partner test risk 1/600). However, it does not allow relatives of identified carriers to be informed of their increased carrier risk, nor does it alert detected carriers of their risk with new partners.7

We propose an alternative form of couple screening (disclosure couple screening) that circumvents these disadvantages: carrier testing is only performed if a DNA sample is provided by each partner but carrier test results are fully disclosed to the couple. If one partner is found to be a carrier the other’s sample is immediately available for analysis, therefore both partners’ results can be imparted simultaneously, allowing couples at low risk of having an affected child to be counselled about their carrier status. Either or both samples could be tested as long as patients were fully informed which samples were tested.

We believe that disclosure couple prenatal screening may decrease test associated anxiety without altering the uptake rate of screening. It may be that an informed carrier woman will be more likely to assign paternity correctly than one who is unaware of her carrier status. As with any genetic test, good pretest counselling is essential. Full evaluation is necessary before any method of screening becomes routine practice.

ZOFIA MIĘDZYBRODZKA NEVA HAITE JOHN DEAN Departments of Medicine and Therapeutics and Obstetrics and Gynaecology, University of Aberdeen, Foresterhill, Aberdeen AB9 2ZD.

Another example favouring the location of BPES at 3q2.

J C de Almeida, J C Llerena Júnior, J B Gonçalves Neto, M Jung and R R Martins

J Med Genet 1993 30: 86
doi: 10.1136/jmg.30.1.86

Updated information and services can be found at:
http://jmg.bmj.com/content/30/1/86.1.citation

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/