Reproductive possibilities for balanced translocation (14) carriers in families with partial trisomy of proximal 14q

G Valkova, M Stefanova

Abstract
Two cases of 14q proximal partial trisomy in sisters from the same family are reported. Clinical features included craniofacial dysmorphism, skin depigmentation, slight anomalies of the limbs, muscular hypertonia, and physical and mental retardation. The third sister had an abnormal phenotype, different from that of her sibs, and proved to be a carrier of a balanced translocation (2;14)(q36;q21) inherited from their phenotypically normal mother.

(J Med Genet 1993;30:73-5)

The first case of proximal trisomy 14q was reported by Allderdice et al in 1971. Thirty-three cases have since been described and their clinical and cytogenetic features have been summarised by Faugeras et al. The present paper reports two recent cases of familial partial trisomy of proximal 14q in two sisters resulting from malsegregation and formation of unbalanced gametes in their mother, who is a carrier of a balanced (2;14)(q36;q21) translocation.

Case report

CASE 1
A girl was born of the second normal pregnancy who had facial dysmorphism, bilateral simian creases, and physical and mental retardation. Cytogenetic analysis was performed at the age of 9 months in September 1969.

Chromosome studies on cultured lymphocytes using routine Giemsa staining showed an additional small acrocentric, the identity of which remained undetermined because of the death of the child at the age of 1 year.

CASE 2
Another girl was born of the third normal pregnancy when the parents were relatively advanced in years (mother 40, father 46). She weighed 2800 g, height 50 cm. Physical and mental retardation was noticed at 4 to 5 months.

The child was first examined at the age of 13 years and severe physical and mental retardation was present. She weighed 13 kg and was 100 cm tall. She could not sit or walk, turn over by herself, speak, or understand what was said to her. Her IQ was found to be below 20. There was a high degree of generalised muscular hypertonia in the flexure groups and craniofacial dysmorphism (fig 1) including microcephaly (OFC 48 cm), low forehead, hypotelorism, horizontal palpebral fissures, enophthalmos, prominent nose with a narrow nasal bridge, inverted nostrils, a poorly defined philtrum, thin lips, irregularly implanted teeth with a protruding right canine, retrognathia, low set ears with small lobules, a short neck, and a funnel shaped dimple 0.6 cm in depth on the skin over the sacrum. There were also prominent spinal processes on T12 and L1 without distortion of the vertebral column. Bilateral simian creases and expressed lines were present on both sides of the palms. Isodactylyism of the left 2nd, 3rd, and 4th toes was found, and on the right the 4th toe overlapped the 3rd. The internal organs and genitalia were reported to be normal. At the age of 13 years there was no sign of puberty. No frequent infections had been recorded.

Cytogenetic studies on cultured lymphocytes after G banding showed a 47,XX,-14q prox karyotype.

Figure 1 Case 2 aged 13 years.

Department of Medical Genetics, Medical University, 4000 Plovdiv, Bulgaria.
G Valkova M Stefanova
Correspondence to Dr Valkova.
Received 4 January 1992, Revised version accepted 31 March 1992.
Family history
The parents were phenotypically normal; and the father had a normal karyotype; however, the mother showed 46,XX,t(2;14)(q36;q21) (fig 2). The same karyotype was also found in their oldest daughter, the first child of the family, who had a history of two spontaneous abortions and was 22 years old at the time of the study. Immediately after her birth it was found that she had a left sided cleft of the upper lip, a midline fissure of both the soft and hard palates, and facial dysmorphism, including pronounced hypertelorism, bilateral epicanthic folds, exophthalmos, a broad nasal bridge, and simian creases on the right palm. When examined at the age of 22 years, she showed normal physical, mental, and sexual development. The lip and palate defects had been surgically repaired. Depigmentation of a lock of hair above the forehead occurred at the age of 10 years. During her third pregnancy, prenatal diagnosis was performed and after a normal fetal karyotype had been established a healthy child was delivered (fig 3). Study of the pedigree showed a spontaneous abortion in her dead grandmother. Her mother’s sister had a normal karyotype.

Discussion
The present cases show various types of segregation in two female 2;14 balanced reciprocal translocation carriers. The zygotes formed by the mother’s gametes resulted from alternate segregation in the first pregnancy and 3:1 segregation in both probands. The daughter’s first two pregnancies were spontaneous abortions and the type of segregation is unknown as no cytogenetic studies were possible. Aneuploid segregation in the maternal gametes might well have occurred. A 2:2 segregation was present during the third pregnancy.

This family prompted us to review published data concerning familial inherited partial trisomy of proximal 14q and analyse the chromosome segregation in the balanced translocation carriers in these families. The summarised data for men and women carriers are shown in fig 4.

Out of a total of 25 women carriers, 61 pregnancies occurred and 20 children were delivered resulting from alternative segregation. Six of these had a normal karyotype (9-8% of all pregnancies) and 14 had a balanced translocation (22-9%); 3:1 segregation resulted in 26 children, 25 of them having partial trisomy of proximal 14q (40-9%) and one having partial monosomy of proximal 14q. There were 15 spontaneous abortions accounting for 24-5% of the total. Out of a total of 12 male balanced translocation carriers the data were as follows: nine zygotes had a normal

![Figure 2 Diagram of the balanced translocation (2;14).](image)

![Figure 3 Family pedigree.](image)
karyotype (21-4%), 22 had a balanced translocation (52-4%), and three resulted from a 3:1 unbalanced segregation (partial trisomy) (7-1%). Seven (16-7%) pregnancies ended in spontaneous abortion and in one pregnancy (2-4%) a child with a mosaic balanced translocation/partial trisomy of proximal 14q was delivered. Abortions by request and ectopic pregnancy were not included. A significant difference in reproduction between balanced translocation carrier men and women was evident.

In order to evaluate the difference in reproduction of men and women, an alternative analysis was applied to determine the significance level. In the case of zygotess with a balanced karyotype and a partial trisomy, there was a significant difference in the formation of zygotest of balanced karyotype and partial trisomy by men and women (p < 0.01). The balanced translocation carrier men formed balanced translocation zygotes considerably more often than the same carrier women, while the 14q proximal partial trisomy zygotes were more often formed by female carriers than by male carriers. The possibility of the offspring of male 14q proximal partial trisomy carriers being miscarried, that is, being transferred to the group of spontaneous abortions, was ignored since the difference in aborted zygotes formed by male and female carriers was not significant (significance level p > 0.1).

These data enabled us to conclude that the risk of conceiving a child with partial trisomy of proximal 14q was considerably higher in female balanced translocation carriers than in males.

The cases reported here confirm and add to the existing phenotypic picture of the 14q proximal partial trisomy syndrome. The sibs described are two of the few children of this syndrome to live to such an advanced age (the oldest child was 18 years old and showed no pubertal development).
Reproductive possibilities for balanced translocation (14) carriers in families with partial trisomy of proximal 14q.
G Valkova and M Stefanova

J Med Genet 1993 30: 73-75
doi: 10.1136/jmg.30.1.73

Updated information and services can be found at:
http://jmg.bmj.com/content/30/1/73

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/