A Pair of Twins, One of whom has Chronic Granulocytic Leukaemia

LESLEY DOUGAN*, IAN D. SCOTT, and H. J. WOODLIFF

From the Cancer Council of Western Australia, the Department of Genetics, University of Western Australia, and the Department of Haematology, Royal Perth Hospital, Western Australia

The finding that one of our patients with chronic granulocytic leukaemia had an apparently identical twin brother led us to undertake genetic studies to establish zygosity, and to study carefully their history for any possible leukaemogenic factors. Bone-marrow cells of the affected twin contained the Ph+ chromosome whereas those of his brother did not (Woodliff and Dougan, 1965).

Material and Methods

Blood was collected from the twins, one sib, and their parents by venepuncture (Fig.). Blood groups were determined by standard methods at the Human Genetics Unit, University of Western Australia. The antisera used were anti-A, anti-A1, anti-B, anti-AB, anti-C, anti-c, anti-D, anti-e, anti-Cw, anti-Ew, anti-Et, anti-V, anti-M, anti-N, anti-S, anti-s, anti-Mi, anti-Vw, anti-Mg, anti-Fy, anti-K, anti-k, anti-Kp, anti-Kp1, anti-Le, anti-Le1, anti-Fy, anti-Le, anti-Xg, anti-Vel, anti-Wr, anti-Di, anti-Js, anti-Jk, and anti-Fy. The Gm and Inv types were done by courtesy of Dr. Arthur G. Steinberg. Transferrin and haptoglobin types were determined by vertical starch gel electrophoresis by the method of Smithies (1959). Serum alkaline phosphatase types were examined by a modification of the method of Arfors, Beckman, and Lundin (1963), as previously described (I. D. Scott and M. K. Scott, 1966, unpublished observations).

The parents, the twins, and the younger sister were carefully interviewed concerning their family history, and a standard questionnaire was completed for the twins.

Results

Genetic Study. The detailed findings of the blood grouping investigation and the examination of the serum genetic markers are given in Table I. In addition, all subjects were found to be Cw(--), Ew(--), V(--), Mg(--), Vw(--), Vel(--), Di(a--), Wr(a--), and Js(a--). Results of the Gm typing showed that I.2 was homozygous for the factors Gm3, 5, 10, 11, and that the subjects I.1, II.3, II.4, and II.5 were heterozygous Gm1/Gm3, 5, 10, 11. All subjects were of the Inv phenotype Inv(1-). The nomenclature is that proposed by a committee of W.H.O. (1965).

From the results of the Gm typing and the findings set out in Table I, the probability that this pair of twins was monozygotic was calculated as suggested by Dr. C. W. Cotterman (Race and Sanger, 1962), and is as shown in Table II.

It was calculated that the probability that the twins were monozygotic was 0.995.

Personal and Family Histories

The twins E.F. and F.F. were born at King Edward Memorial Hospital for Women, Subiaco, Western Australia, on March 30, 1928; the parents were Roman Catholics who had recently migrated to Australia from Italy. This was the mother's third pregnancy and it continued to term. She had no recollection of any antenatal X-ray examinations. F. was born first as a vertex presentation and E. within the next few minutes by the breech. Their early development was quite normal and the first 10 years were spent in an inner suburb of metropolitan Perth. In 1938, when the twins

Received April 18, 1966.

Fig. Pedigree chart.
TABLE I
DATA BEARING ON ZYGOSITY

<table>
<thead>
<tr>
<th>Blood groups</th>
<th>I.1</th>
<th>I.2</th>
<th>I.3</th>
<th>I.4</th>
<th>I.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABO</td>
<td>OO</td>
<td>A+O</td>
<td>A+O</td>
<td>A+O</td>
<td>OO</td>
</tr>
<tr>
<td>Rhesus</td>
<td>Rf</td>
<td>Rf</td>
<td>r</td>
<td>r</td>
<td>Rf</td>
</tr>
<tr>
<td>MNSs</td>
<td>MnMs</td>
<td>MnMs</td>
<td>MrMs</td>
<td>MrMs</td>
<td>MnMs</td>
</tr>
<tr>
<td>P</td>
<td>P(w)</td>
<td>P(w)</td>
<td>P(w)</td>
<td>P(w)</td>
<td>P(w)</td>
</tr>
<tr>
<td>Kell</td>
<td>AB+</td>
<td>AB+</td>
<td>AB+</td>
<td>AB+</td>
<td>AB+</td>
</tr>
<tr>
<td>Lewis</td>
<td>Le(a-b+)</td>
<td>Le(a-b+)</td>
<td>Le(a-b+)</td>
<td>Le(a-b+)</td>
<td>Le(a-b+)</td>
</tr>
<tr>
<td>Duffy</td>
<td>Fy(a+b+)</td>
<td>Fy(a+b+)</td>
<td>Fy(a+b+)</td>
<td>Fy(a+b+)</td>
<td>Fy(a+b+)</td>
</tr>
<tr>
<td>Kidd</td>
<td>Jk(a-+)</td>
<td>Jk(a-+)</td>
<td>Jk(a-+)</td>
<td>Jk(a-+)</td>
<td>Jk(a-+)</td>
</tr>
<tr>
<td>Lutheran</td>
<td>Lu(a-b+)</td>
<td>Lu(a-b+)</td>
<td>Lu(a-b+)</td>
<td>Lu(a-b+)</td>
<td>Lu(a-b+)</td>
</tr>
<tr>
<td>MNS</td>
<td>Ms(a-)</td>
<td>Ms(a-)</td>
<td>Ms(a-)</td>
<td>Ms(a-)</td>
<td>Ms(a-)</td>
</tr>
<tr>
<td>Transferrins</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>Haptoglobins</td>
<td>2-2</td>
<td>2-2</td>
<td>2-2</td>
<td>2-2</td>
<td>2-2</td>
</tr>
<tr>
<td>Alkaline phosphatase</td>
<td>Ppt</td>
<td>Ppt</td>
<td>Ppt</td>
<td>Ppt</td>
<td>Ppt</td>
</tr>
</tbody>
</table>

TABLE II
CALCULATION OF ZYGOSITY

<table>
<thead>
<tr>
<th>Likeness of sex</th>
<th>Likeness of blood group: ABO</th>
<th>Likeness of blood group: Rhesus</th>
<th>Likeness of blood group: MNSs</th>
<th>Likeness of blood group: P</th>
<th>Likeness of blood group: Kell</th>
<th>Likeness of blood group: Lewis</th>
<th>Likeness of blood group: Lutheran</th>
<th>Likeness of blood group: Kidd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial chance of being dizygotic</td>
<td>0.70</td>
<td>0.50</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Likeness of serum factors: Haptoglobins</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likeness of serum factors: Transferrins</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likeness of serum factors: Alkaline phosphatase</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likeness of serum factors: Gm factors</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Likeness of serum factors: Inv factors</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Initial chance of being dizygotic</td>
<td>0.0014</td>
<td>0.0014</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Probability of being monozygotic</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Probability of being dizygotic</td>
<td>0.0014</td>
<td>0.0014</td>
<td>0.0014</td>
<td>0.0014</td>
<td>0.0014</td>
<td>0.0014</td>
<td>0.0014</td>
<td>0.0014</td>
</tr>
</tbody>
</table>

Note: NT, not tested, either unavailable or antisera not suitable.
Kell genotypes are notated as proposed by Allen, Lewis, and Fudenberg (1958).

...were 10 years of age, the family moved back to Europe and lived there for the next 11 years in Bergamo, Northern Italy. There the boys went to school together and most of their activities were shared. They took up the same sport of cycling.

Returning to Australia in 1949, they went to work for a Perth firm engaged in galvanizing iron, and stayed in this occupation for two years. Following this both joined the government railway service, E. as a shunter, and F. as a signalman, and they have continued in these occupations.

E. married in 1955 and set up house in an inner metropolitan suburb, his twin married two years later and lived in the same area, two streets from E. The parents' home and those of both twins are all within a radius of one mile.

Neither twin had been exposed to radiological procedures apart from routine chest clinic surveys and neither had a significant drug history. E. suffered from otitis media and sinusitis during the two years before the diagnosis of his blood dyscrasia in 1963. At the time of the earlier mild illness he was found to be allergic to milk and kapok. Family members described personality differences, F. having been always the more dominant and E. having a more gentle nature.

E. and his father both suffered from moderate deafness. In the case of E. this was due to otosclerosis and this was probably also the case with his father. F. had normal hearing.

The living sibs are two sisters, born in 1922 and in 1931, both of whom are in good health but only one was available for testing and interview. Another female sib,
A Pair of Twins, One with Chronic Granulocytic Leukaemia

born in 1921, died at the age of 6 months from respiratory tract infection. There was no family history of other serious blood dyscrasias, malignancy, congenital malformations, major allergic state, or parental consanguinity.

Discussion

The aetiology of chronic granulocytic leukaemia is unknown but it is considered unlikely that hereditary factors are important, since there is no familial incidence of the disease. The role of the Ph¹ chromosome is uncertain, but since it is present only in the haemopoietic cells the abnormality cannot be hereditary, a deduction confirmed by the finding in the present twins and in another pair of twins reported by Goh and Swisher (1965) that the Ph¹ chromosome occurs only in the affected twin (Woodliff, Dougan, and Onesti, 1966). Irradiation is the only generally accepted aetiological agent in leukaemia. Other possible leukaemic agents include certain drugs and chemicals, viruses and other infective agents, and dietary deficiencies. It was, therefore, important to seek out any possible differences in the environmental history of the twins. In spite of diligent questioning we were unable to detect any differences that might reasonably be thought to be leukaemogenic.

Summary

Monozygosity was established with reasonable certainty in a pair of twins, one of whom had chronic granulocytic leukaemia. No apparent environmental stimulus to leukaemogenesis was found. Nevertheless it must be concluded that nurture rather than nature is the more important in the development of this form of leukaemia.

This work was supported by the Cancer Council of Western Australia, and in part by the National Institutes of Health, Bethesda, Maryland, U.S.A., research grant No. GM11077-02.

The authors wish to acknowledge the assistance rendered by Dr. Arthur G. Steinberg, Western Reserve University, Cleveland, Ohio, U.S.A. who performed the Gm and Inv typing, and Dr. Ruth Sanger who read the manuscript.

Generous gifts of some of the blood typing antisera, anti-Jk¹ from Dr. Angelyn Konugres, Boston; anti-P, Prof. Prokop; anti-Py, anti-Lu, anti-Wr, anti-Kp, and anti-Js from Ortho, Raritan; anti-A, (seed) from King Edward Memorial Hospital for Women, Perth; and anti-Vel from the Queensland Red Cross Blood Bank, Brisbane, are gratefully acknowledged.

The skilful technical work of Mrs. M. K. Scott and Miss D. E. Halley of the Genetics Units of the University of Western Australia, without whose assistance this work could not have been completed, is also acknowledged.

REFERENCES

A pair of twins, one of whom has chronic granulocytic leukaemia.

L Dougan, I D Scott and H J Woodliff

doi: 10.1136/jmg.3.3.217

Updated information and services can be found at:
http://jmg.bmj.com/content/3/3/217.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/