LETTERS TO THE EDITOR

Beckwith-Wiedemann syndrome

We note with interest the reports by Moutou et al. and Viljoen and Ramezani
that provide further evidence for maternal transmission of Beckwith-Wiedemann syndrome (BWS) and supporting a mechanism involving genomic imprinting.

The location of the insulin-like growth factor-2 gene (Igf2) at 11p15.5, the region implicated by both linkage analysis and cytogenetic studies as the site of BWS, led to the suggestion that overproduction of Igf2 might be responsible for overgrowth seen in BWS.

This was supported by the finding that only the paternal Igf2 allele is transcribed in most tissues in the mouse, and that some cases of BWS in mice were found with altered expression of the maternal Igf2 allele. Furthermore, mutation in the normal developing fetus of the maternal Igf2 allele exerts a suppressive influence on the expression of the paternal allele.

We recently reported a family with BWS and a parametric analysis of 11p with a breakpoint at 11p15.5. The family came to our notice when a baby was born at 29 weeks' gestation with features of BWS including birth weight greater than the 97th centile, exophalmas, macroglossia, and bilateral horizontal double ear creases. Her karyotype was 46,XX,inv(11)(p11.2p15.5). Her mother had the same karyotype, but no convincing evidence of BWS. She has since delivered a further baby, again with this karyotype, who also has BWS. The maternal grandmother had normal chromosomes.

We propose that a gene at the 11p15.5 inversion breakpoint was disrupted and that BWS was caused by lack of a maternally imprinted gene, the inversion having been inherited either from the maternal grandfather (who was unavailable for study), or having arisen de novo during spermatogenesis. Our findings would also be consistent with the hypothesis of lack of regulation of the paternal Igf2 gene by disruption of a maternal Igf2 suppressor gene at 11p15.5 and would be difficult to explain with a model requiring increased copies of paternal alleles, as suggested by Little et al. Furthermore, the two babies in our report had different fathers.

We also proposed that when sporadic cases of BWS are the result of uniparental disomy, other maternal material on 11p is lost predisposing to malignancy, especially Wilms' tumour, and that the surviving baby may be at lower risk of this complication compared to sporadic cases of BWS. However, the hypothesis of Little et al. suggests otherwise, as the deregulated paternal Igf2 allele may predispose to neoplasia.

We thank Dr. Akeson and Dr. Ramezani to see whether Wilms' tumour incidence in BWS differs between cases with unbalanced paternal translocations, paternal 11p isodisomy, and balanced maternal 11p translocation. This requires further study.

A. M. NORMAN
A. P. READ
D. DONNAI
Department of Medical Genetics,
St Mary's Hospital, Hatfield Road,
Manchester M13 OHJ.

A mutation in exon 7 of the CFTR gene is common in the western part of France

Cystic fibrosis is the most common severe genetic disease found in Caucasians. The gene causing it, called cystic fibrosis transmembrane conductance regulator (CFTR), was cloned three years ago. The most common mutation in populations of north European origin, ∆F508, accounts for about 70% of cystic fibrosis chromosomes analysed throughout the world. During the past three years more than 100 non-∆F508 mutations have been found in the CFTR gene, many of them being very rare. In general, in various countries, the most common of these rare mutations accounts for about 2 to 4% of the non-∆F508 CF chromosomes. While screening for CF mutations in a population of Celtic origins (Brittany, western France), we have found a quite frequent mutation located in exon 7. This frameshift mutation, 1078 del T, initially described by M Claustres (personal communication), is the most common mutation after ∆F508. It accounts for 27.3% of our non-∆F508 chromosomes or 4.93% of our CF chromosomes (18 of 363 chromosomes). The deletion can be detected either by denaturing gradient gel electrophoresis (DGGE), single stranded conformation polymorphism (SSCP), or allele specific oligonucleotide (ASO) hybridisation. As a mutation, it was found on a C. haptophylax (XY2c allele 2, KM19 allele 1) it is more than likely that the 1078 del T arose in a common ancestor in these 18 families originating from a similar geographic background. A founder effect may explain the occurrence of this mutation in 4.93% of our CF chromosomes. It remains to be shown if this frequency is particular to our population or whether it is also observed in other Celtic areas.

An additional point which is worth stressing is that in our population screening for these mutations, that is ∆F508 (81.16%), 1078 del C (4.93%), and G551D (4.10%) (which account for more than 90% of our CF gene pool) greatly improves genetic counselling.

However, we would like to draw attention to the fact that the ethnic origin of CF patients is important to take into account in genetic counselling for CF. Identification of the most common mutations is a crucial step in improving genetic diagnosis of CF or in planning a screening test for our population of CF carriers.

M. P. AURDREZET
B. MERCIER
H. GUILLERMIT
C. FEREC
Centre de Biogenetique, Centre de Transplantation Sanguine,
BP 454, 29203 Brest Cedex, France.

Williams syndrome and chromosome 18

Williams syndrome in its classic form is characterised by a typical facies with malar flattening and a full lower face, supravalvar arterial stenosis and peripheral pulmonary artery stenosis, mild to moderate mental retardation with a friendly, outgoing personality, and growth deficiency. Various other symptoms may be observed. The aetiology of the syndrome is unknown. In the great majority of cases Williams syndrome is a sporadic event. Supravalvar arterial stenosis and other features of the syndrome may follow an autosomal dominant inheritance pattern with variable penetrance and expression. In several patients with the Williams phenotype chromosome studies have been found, but no consistent abnormality has emerged. Chromosomes 4, 6, 8, 9, 12, 15, 17, and 19 have been implicated in different patients. Recently, Williams syndrome and an unbalanced 13:18 translocation, 45,XX, -13, -18, + del(18)(p13:18)(q13:q23), was described by Colley et al. The chromosome translocation had resulted in loss of material from the proximal arm of chromosome 13 and from the distal long arm of chromosome 18.
A mutation in exon 7 of the CFTR gene is common in the western part of France.

M P Audrezet, B Mercier, H Guillermit and C Ferec

doi: 10.1136/jmg.29.9.679-a

Updated information and services can be found at:
http://jmg.bmj.com/content/29/9/679.2.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/