Autosomal dominant retinitis pigmentosa (ADRP): a rhodopsin mutation in a Scottish family

C Bell, C A Converse, M F Collins, L Esakowitz, K F Kelly, N E Haites

The term retinitis pigmentosa describes a range of hereditary degenerative disorders of the retina, which are both clinically and genetically heterogeneous. Autosomal dominant retinitis pigmentosa (ADRP) accounts for 22% of the retinitis pigmentosa population. Linkage of an ADRP locus to the marker D3S47 on the long arm of chromosome 3 (3q) has been established. Rhodopsin, the major integral membrane protein of the rod outer cells and also located on 3q, was an obvious candidate gene. An intensive search for mutations in the rhodopsin gene of RP patients has shown several different mutations.

We searched for mutations in the rhodopsin gene of a Scottish family defined as having the diffuse type of ADRP (referred to as ADRP3 in reference 8 and T family in reference 9). Using direct sequencing, affected members of the family were shown to be heterozygous for the point mutation (TAC to TGC) in codon 178 of the rhodopsin gene (fig 1). This mutation, previously described, results in the substitution of a tyrosine residue by a cysteine.

Figure 1 Nucleotide sequence encompassing the base substitution at codon 178 (TAC-TGC) in exon 3 of the rhodopsin gene. The affected subject (A) is heterozygous for the mutation and the unaffected (B) has the normal sequence. The amino acids coded by this sequence are denoted alongside the sequence.

Figure 2 Alignment of the gel, showing RsaI digested exon 3 PCR products, with the pedigree. Tracks are numbered 1 to 19 as shown and correspond with the above numbered subjects in the pedigree. Unaffected subjects have fragments of 166, 105, and 76 bp and affected subjects, heterozygous for the mutation, have a fragment of 271 bp in addition to these. Lane 20 is size standard kb ladder.
residue in the first codon of exon 3. The mutation also destroys an RsaI site and thus RP patients may be screened quickly for the presence of the mutation by simple restriction analysis. The segregation of the mutation with the disease in this family is shown in fig 2.

Codon 178 occurs in an intradiscal loop of rhodopsin which is implicated in determining normal rhodopsin tertiary structure. It is likely that a mutation alters this structure, which in turn causes changes related to the pathogenesis of the disease.

The family also shows significantly decreased levels of certain polyunsaturated acids in the plasma of affected subjects compared to unaffected relatives. It is possible that a gene involved in the synthesis or transport of these fatty acids is linked to the rhodopsin gene.

Although the exact mechanism is unknown, knowledge of the actual mutation presents an opportunity for accurate counselling of affected persons.

We would like to thank The Wellcome Trust, the National Retinitis Pigmentosa Foundation, and the George Gund Foundation for their support in funding this research and also the Medical Illustration department at Aberdeen University for their help with the graphics.

10 Doi T, Molday RS, Khorana HG. Role of the intradiscal domain in rhodopsin assembly and function. Proc Natl Acad Sci USA 1990;87:4991-5.
Autosomal dominant retinitis pigmentosa (ADRP): a rhodopsin mutation in a Scottish family.
C Bell, C A Converse, M F Collins, L Esakowitz, K F Kelly and N E Haites

doi: 10.1136/jmg.29.9.667

Updated information and services can be found at:
http://jmg.bmj.com/content/29/9/667.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/