BOOK REVIEWS

All titles reviewed here are available from the BMJ Bookshop, PO Box 295, London WC1H 9TE. Prices include postage in the UK and for members of the British Medical Journal Overseas, but overseas customers should add 15% to the value of the order for postage and packing. Payment can be made by cheque in sterling drawn on a UK bank, or by credit card (Mastercard, Visa, or American Express) stating card number, expiry date, and full name.


This book is a welcome addition to the 'Major Problems in Neurology' series to which Peter Harper has already contributed his excellent Myasthenic dystrophy monograph, now in its second edition.

The present monograph deals with all aspects of Huntington's disease in separate chapters including historical, social, and psychological, management, epidemiology, genetics, counselling, and predictive testing. All the chapters are written by Peter Harper or his colleagues in Cardiff and there is a pleasant continuity of style unusual in a multiauthor book.

The Cardiff team lead by Peter Harper has made major contributions to the understanding of Huntington's disease since 1976 and it would have been nice if the Cardiff team had already found the gene for Huntington's disease as they have recently done for myotonic dystrophy. However, this goal still eludes the intense international search.

It is hard to imagine a better reference volume for a single disease and many people will find it invaluable for information to help with the diagnosis, management, or counselling of individual patients and families. It is also remarkable how many of the principles of clinical genetics are illustrated by Huntington's disease and the Cardiff team exploit this in a series of elegant vignettes which include an excellent description of genetic registers and the ethical problems relating to predictive testing.

This book is to be thoroughly recommended for all neurologists, clinical geneticists, and anybody else with even a passing interest in medical genetics.

RODNEY HARRIS


If there is a theme to this volume, it is irregularities. Irregularities in DNA replication and their correction are covered in chapters on spontaneous and induced mismatch repair. Irregularities in transcription are the subject of a review of mRNA editing, and irregularities in translation are described in a chapter on programmed frameshifts. Finally, chapters on segregation distortion and on inheritance of acquired characters deal with irregularities in inheritance.

Few of these chapters contain much material directly relevant to day to day clinical genetics as you like them depends on how much curiosity you feel about some of the wilder shores of genetics. Connoisseurs of the obscure will especially enjoy the chapter on mRNA editing. If you thought your car was needlessly complicated, consider trypanosomes. These organisms have totally garbled mitochondriand genes. To make sensible mRNAs they perform a kind of specif ic sequence alterations on the transcripts, guided by template RNAs in which both A and G pair with U. And it's not just trypanosomes: human apo-B48 apoliprotein is made by specifically changing C to U at position 6666 of the mRNA, to generate a stop codon which is not present in the DNA.

I suspect that some students are still being told that bacteria can change from kero to enol forms and so mispair during DNA replication. Their lecturers should read the chapter on spontaneous mutation by Drake. Unusually for such a book, it is badly written, but it is worth putting up with the pretentious style for a very useful summary of how DNA sequences really get changed. In a complementary review, Modrich discusses mechanisms of repair. Even when the DNA sequence is correct the gene product may not be what you expect: Askins, Weiss, Thompson, and Gesteland discussed programmed reading frame shifts. These are not the 'hardware' frameshifts made by adding or deleting nucleotides from DNA, but 'software' shifts in which ribosomes execute a programmed jump while reading a message.

Even if the genetic information obeys the rules, the overall inheritance pattern may not. Lyttle discusses segregation distorters, and Landman the inheritance of acquired characters. Landman's chapter is a nice illustration of how science works by placing phenomena on a mental map. Inheritance of acquired characters, that great unthinkable of evolution, becomes a plausible and uncontroversial once it is mapped to the periphery of genetics as a series of one off mechanisms which don't threaten the Central Dogma.

This year, unusually, there are very few reviews directly relevant to clinical genetics. Enthusiasts for receptors will enjoy the chapters on transcription activation by oestrogen and progesterone receptors (Grone- meyer), and on the T cell antigen receptor (Wells). Otherwise the best review is by Lasko, Cavanee, and Nordenskjold on 'Loss of constitutional heterozygosity in cancer'. They show how extensions to the retinoblas- toma model are relevant for other cancers. The story is familiar but well told, with a useful large table summarising much data. Beside this, Ehling describes methods for estimating mutation risks from radiation or mutagens. These are based mainly on his work on induced dominant cataracts in mice. This should be read alongside Neel's chapter in last year's Annual Reviews of Genetics; both refer to the same studies.

As always, the book is well produced, mostly well written, and very well priced, especially for members of the American Society of Human Genetics. Even if this year is thin on human genetics, it is still a thoroughly good book.

ANDREW P READ


The book is packed with useful information. It is quite up to date and the author and publishers deserve credit for this. The non-specialist at whom the book is partly aimed may find some sections of the book difficult to follow. For those who want to know there is an opportunity to learn of some of the tremendous developments in the rapidly advancing field of molecular genetics.

The book is divided into six chapters. The first deals with the organisation of the human genome and control of expression. The second chapter deals with the evolution of genes and the origin of mutations. The next four chapters deal with the applications of recombinant DNA technology. The areas covered include methods used to analyse DNA, the principles of linkage analysis to map the human genome, and the clinical applications of DNA technology in a broad spectrum of diseases. Some recent examples of disease specific mutations are described, particularly for single gene disorders. In addition, some emphasis is placed on the more common disorders such as cardiovascular disease, cancer, and mental illness, which are already major areas of research interest.

This book of this size inevitably there are aspects which are only described briefly in principle and this may not entirely satisfy the curious mind. The compensation for this is the breadth of the areas covered, and this is a notable achievement in an area where there has been an explosive increase in the number of publications in the last few years.

This book is inexpensive and well worth the price. I look forward to a second edition in perhaps two years' time.

N A KALISHEK


There is a singular fascination in biographies of the great and famous. This is no exception. It traces the life and works of one of the most distinguished scientists of modern times, Macfarlane Burnet. Of Scots-Irish Presbyterian stock, he was born in a small town in the state of Victoria, Australia, in 1899. From an early age he exhibited a talent for application and hard work, and won a rare scholarship to Geelong School and from there to Melbourne University, graduating in medicine in 1922. But he seemed to have been really attracted to clinical work and soon gravitated to pathology, most notably bacteriology. Apart from a period at the Lister Institute in London, where he took a PhD degree, and later at the National Institute of Medical Research, nearly all his professional life was spent in Melbourne at the Walter and Eliza Hall Institute of which he eventually became director.

His early work centred on viruses, especially those associated with influenza and Q fever, the causative agent of which was named after him (Coxiella burnetii). The recognition of his work. He was elected a Fellow of the Royal Society in 1942. But then in 1957 he switched his interests to an entirely different field, namely immunology. Furthermore, his research team was obliged to follow