 Syndrome of the month

Craniodiaphyseal dysplasia

L A Brueton, R M Winter

Craniodiaphyseal dysplasia is a very severe bone dysplasia characterised by massive generalised hyperostosis and sclerosis, especially involving the skull and facial bones. Progressive bony encroachment upon cranial foramina leads to severe neurological impairment in childhood.

In 1958, Joseph et al described a child with severe sclerosis of the skull and facial deformity, noted the similarity of features to a case reported previously by Halliday, and termed the condition progressive craniodiaphyseal dysplasia. At that time they considered it to be a variant of Camurati-Engelmann disease. Gorlin et al delineated the syndrome and cited published cases which had previously been described as cases of leontiasis ossea (craniofacial bony deformity leading to lion-like appearance). In 1974, MacPherson described three cases of craniodiaphyseal dysplasia, pointed out the variable manifestations of the condition, and emphasised the overlap in phenotype of CDD with some of the other craniotubular dysplasias and hyperostoses. He concluded that "perhaps the name craniodiaphyseal dysplasia should refer to a group of diseases". CDD remains a rare disorder with fewer than 20 case reports published.

This review is based on previously published cases and one new unreported case (table).

Clinical features

CRANIOFACIAL ABNORMALITIES
Typically, patients with craniodiaphyseal dysplasia present in early infancy with facial abnormalities. Bony overgrowth results in paranasal bossing, apparent hypertelorism, and an increased head circumference. Recurrent dacrocystitis occurs in association with progressive stenosis of the nasolacrimal ducts. The disorder is progressive. Fig 1 shows the evolution of the facial changes over a four year period.

Affected infants may come to medical attention because of respiratory difficulty owing to nasal obstruction before the characteristic facial appearance has developed.

NEUROLOGICAL ABNORMALITIES
Bony encroachment upon cranial foramina causing cranial nerve compression (especially of II and VIII) leads to progressive visual and auditory impairment, with ultimate blindness and deafness. Other reported ocular problems include strabismus, exophthalmos, and loss of binocular vision, in association with increasing hypertelorism. Seizures may occur and mental retardation has been reported. However, in the majority of cases developmental progress was normal until hindered by progressive deterioration in vision and hearing.

GENERAL MANIFESTATIONS
Growth may be markedly retarded and delayed sexual maturation has been reported.

Radiographical manifestations (figs 2 to 4)
The whole skull, including the facial bones and mandible, shows severe sclerosis and hyperostosis with nasal obstruction and obliteration of the sinuses. Eventually, normal contours are lost in a thickened, homogenous opacity. The appearance of the long bones varies in severity and distribution from patient to patient, but the long bones are generally cylindrical in appearance because of diaphyseal, endosteal, cortical thickening, and exhibit a lack of modelling. The bones of the hands may be similarly affected. There is usually moderate thickening and sclerosis of the ribs, clavicles, and pelvis. Sclerosis of the spine has been found in some cases, the changes being more severe.

The Kennedy Galton Centre, Clinical Research Centre, Northwick Park Hospital, Harrow, Middlesex HA1 3UJ.
L A Brueton, R M Winter
Correspondence to Dr Brueton.
marked in the vertebral arches than in the vertebral bodies. Tucker et al\(^7\) described the evolution of the radiographical changes in CDD and showed variation in the distribution of increased bone density over a five year period, with the abnormalities in the long bones and spine becoming less pronounced, while the sclerosis of the skull increased.

Management and prognosis

Affected subjects develop severe problems with progressive bony encroachment upon cranial foramina and nasal passages leading to deafness, blindness, and respiratory difficulty.

In one case a possible disturbance of thyrocaltcin metabolism was suspected and a total thyroidectomy performed in an attempt to halt the continuous deterioration.\(^6\) However, histologically the thyroid was found to be normal and the disease continued its relentless progress.

Surgical decompression of cranial foramina is possible but the risk of brain stem compression caused by postoperative oedema is high, and such procedures are only of short term benefit as the bony overgrowth inevitably recurs.

Successful treatment of progressive loss of vision in craniometaphyseal dysplasia by optic nerve decompression in conjunction with administration of human calcitonin has been reported.\(^18\) Partial responsiveness of CDD to therapy with synthetic calcitonin has been suggested by a report of a fall in the velocity of increase in head circumference and changes in serum total and bone isoenzyme alkaline phosphatase in one case.\(^8\) However, side effects of calcitonin therapy include abdominal pain, nausea, and vomiting.

Clinical deterioration is frequently heralded by irritability and episodic early morning headaches. Symptoms of brain stem compression and raised intracranial pressure develop. Cardiac problems related to right ventricular failure may occur.\(^5\)\(^8\) Several severely affected children have died between the ages of 7 and 16 years.\(^2\)\(^5\)\(^8\)\(^9\)
Craniodiaphyseal dysplasia

Differential diagnosis
Craniodiaphyseal dysplasia must be distinguished from Camurati-Engelmann disease (diaphyseal dysplasia). In infancy differentiation may be difficult although in CDD the gross skull changes overshadow all others, whereas in Camurati-Engelmann disease the degree of craniofacial involvement is generally mild with the major changes occurring in the long bones. The course of Camurati-Engelmann disease is usually characterised by stasis or remission in adulthood, in contrast to the inevitable progression of CDD.

Autosomal dominant inheritance with occasional non-penetrance is well established in Camurati-Engelmann disease.

The combination of marked craniofacial and diaphyseal hyperostosis is also seen in Van Buchem's disease or 'generalised cortical hyperostosis'; however, the facial changes develop slowly becoming apparent in the second decade with mandibular enlargement being the predominant abnormality, while the head circumference is only rarely enlarged. MacPherson discussed the overlap of CDD with some of the other craniofacial dysplasias including cranio-metaphyseal dysplasia and frontometaphyseal dysplasia. Prominence of the supraorbital ridge with irregular sclerosis throughout the rest of the skull are the typical features described in frontometaphyseal dysplasia that serve to differentiate this disorder from other conditions. There are both autosomal dominant and recessive forms of cranio-metaphyseal dysplasia. The clinical and radiographical features in the recessive form are much more severe than in the dominant type. Cases of recessive cranio-metaphyseal dysplasia resemble those of craniodiaphyseal dysplasia with similar facial distortion, enlargement of the skull, marked paranasal bossing, obliteration of the sinuses, and bony overgrowth causing cranial nerve compression. Radiological examination of the long bones distinguishes the two conditions. In cranio-metaphyseal dysplasia there is metaphyseal widening and cortical thinning giving rise to a club shaped con-
whether the two conditions are separate entities or whether they are part of a disease spectrum.

Genetics and prenatal diagnosis
The clinical manifestations of CDD and disease progression (pattern and speed) are variable and it is quite possible that the condition is heterogeneous, although the question of heterogeneity is difficult to address given the small number of published cases. There appears to be a subgroup with a particularly severe type of CDD characterised by rapid progression in the first decade. 1 2 5 6 8–10

Autosomal recessive inheritance has been suggested on the basis of one affected sib pair16 and a report of parental consanguinity in one case.2 However, upon review of the case reported by de Souza,16 we believe the features to be more compatible with the diagnosis of Van Buchem’s disease than with CDD. Schaefer et al11 reported an affected mother and child that they considered to have CDD, although the radiographical changes reported are not entirely typical of CDD and overlap with those described in craniometaphyseal dysplasia.11

As the typical features of this disorder are generally not present at birth but gradually evolve during infancy, and the basic defect is unknown, reliable prenatal diagnosis is not possible at present.

In cases where the presenting feature has been respiratory distress, significant thickening and sclerosis of the clavicles have been noted on neonatal chest radiographs.8 In view of this observation it would be interesting to look for increased bone density (particularly of the ribs/clavicles) by detailed ultrasonography in at risk pregnancies to see if any early signs of the disorder can be detected.

Pathogenesis
The nature of the basic defect is not known. The earliest metabolic studies in CDD were described by Halliday,4 the results of which suggested that increased calcium absorption had an important role to play. Reviewing the metabolic profiles of cases of CDD, the only consistent biochemical abnormality is that serum alkaline phosphatase is typically markedly raised (suggesting that a major abnormality is of grossly excessive osteoblastic activity); calcium and phosphate levels are, however, normal. The urinary excretion of cAMP has been shown to be raised in one case.

Bonucci et al12 reported the histological findings in bone biopsies from the skull (membranous bone) and pelvis (endochondral bone) of a case of CDD. In both sites many bony trabeculae were very thick and contained variable numbers of osteocytes within large and irregularly shaped lacunae. Almost invariably the trabeculae had very thick, uncalcified osteoid seams. Osteosclerosis was evident in both sites. These

Figure 1 The evolution of the facial changes in a child with craniometaphyseal dysplasia over a four year period. (a) The facial appearance at the age of 2 months. A minor degree of paranasal bossing is evident. (b) Aged 4 years showing the characteristic facies with an enlarged mandible, marked paranasal bossing, and hypertelorism. (c) Profile at the age of 4 years showing macrocephaly and obliteration of the nasal bridge.

figuration of the long bones, whereas in CDD diaphyseal changes give rise to a cylindrical appearance.6 7 In view of the considerable overlap between recessive craniometaphyseal dysplasia and craniometaphyseal dysplasia there remains debate as to
Craniodiaphyseal dysplasia

There is progressive generalised thickening of the calvarium with marked sclerosis of the facial bones and base.

Figure 2 Lateral skull x rays at 2 months (a) and 2 years (b). Morphological changes in the bone tissue show overproduction of bone with striking increase in volume on one hand, and poor calcification of the matrix and the presence of thick borders of uncalcified osteoid on the other.

To date, the primary abnormality has not been elucidated, the bone changes are not dependent on the developmental type of bone, and the reported ectopic calcification in voluntary muscle may imply an abnormality in the calcium and phosphate metabolism or a more general connective tissue disorder not confined to the bony matrix.

Figure 3 Neonatal AP chest radiograph. The ribs and clavicles are thickened and sclerotic. There is also sclerosis of the spine.

Figure 4 Radiograph of the pelvis and femora at the age of 6 weeks. The femoral shafts are undermodelled and sclerotic.

Craniodiaphyseal dysplasia.

L A Brueton and R M Winter

doi: 10.1136/jmg.27.11.701

Updated information and services can be found at:
http://jmg.bmj.com/content/27/11/701.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/