Syndrome of the month

Journal of Medical Genetics 1989, 26, 45-48

Johanson-Blizzard syndrome

JANE A HURST AND MICHAEL BARAITSER
From the Department of Clinical Genetics, Institute of Child Health, 30 Guilford Street, London WC1N 1EH.

In 1971 Johanson and Blizzard\(^1\) reported a new syndrome in three unrelated girls characterised by congenital aplasia of the alae nasi, deafness, hypothyroidism, dwarfism, absent permanent teeth, and malabsorption. Children with this syndrome had been described earlier by Morris and Fisher in 1967\(^2\) and Townes in 1969\(^3\) as examples of trypsinogen deficiency disease. Townes and White\(^4\) subsequently reviewed the patient reported in 1969\(^3\) and described the presence of additional features which confirmed the diagnosis of the Johanson-Blizzard syndrome. There have since been 22 patients reported with Johanson-Blizzard syndrome, and a further seven children related to these. The spectrum of associated features is now well documented and the inheritance of the syndrome is autosomal recessive. However, there remain many problems which make counselling difficult, in particular the degree of mental handicap and the observation that some children die from complications of the severe malabsorption despite intensive treatment. This article reviews the 22 patients previously reported and also includes details of a previously unreported boy.

Clinical features

The main features are shown in the table. The most constant signs necessary to make a diagnosis are aplasia of the alae nasi, an exocrine pancreatic defect, and unusual hair growth pattern.

In the absence of major structural abnormalities, the affected infant usually comes to medical attention because of failure to thrive. On presentation, the infant is malnourished, hypotonic, and often oedematous because of hypoproteinaemia.

THE FACE

The diagnosis should be made easily in the neonatal period. Indeed the 'gestalt' of the Johanson-Blizzard syndrome is so distinct that seen once it should not be missed (figs 1 and 2). The picture is determined by the unusual nasal configuration. The severe aplasia of the alae nasi leads to the appearance of a

| TABLE Frequency of features in the Johanson-Blizzard syndrome |
|-------------------|-----------------|---------------|
| | Reported cases | This case |
| | \(n=22\) | |
| Hypoplastic alae nasi | 22 | + |
| Pancreatic insufficiency/failure to thrive | 21 | + |
| Aplasia cutis congenita | 19 | - |
| Short stature | 15 | + |
| Mental retardation | 13 | Mild |
| Dental anomalies | 13 | + |
| Deafness | 12 | + |
| Anorectal anomalies | 11 | - |
| Microcephaly | 8 | - |
| Genitourinary abnormalities | 7 | - |
| Hypothyroidism | 6 | + |
| Cardiac malformation | 3 | - |

FIG 1 Our patient, a boy, aged two months. Note the small nose with aplasia of the alae nasi and the abnormal hair growth pattern, also shown in fig 3.
thin, torpedo shaped nose with large nostrils. In addition, the hair is swept up, especially frontally (fig 3), and has a patchy distribution over the scalp. Closer inspection shows areas of alopecia (fig 4) with underlying aplasia cutis congenita, which are

FIG 2 Strikingly similar facial features are seen in this unrelated girl.

characteristically in the midline and in the occipital region. They heal to form atrophic scars.

MALABSORPTION

An exocrine pancreatic defect is a constant feature of this condition. Townes and Townes and White\(^4\) described the abnormalities of pancreatic function. They reported an absence of trypsin, chymotrypsin, and their proenzymes, as well as carboxypeptidase and lipase, but they thought the amylase activity was normal. This was subsequently found to be a spurious result as isoenzyme studies showed the amylase was from the salivary gland. When the contribution from saliva is excluded, pancreatic amylase activity is absent. At necropsy the parenchyma of the pancreatic gland is replaced by fatty tissue.\(^5\)\(^6\) There are fewer islets of Langerhans but clinically there are no reports of impaired glucose tolerance.

The severe malabsorption caused by these enzyme deficiencies leads to hypoproteinaemia, oedema, anaemia, and failure to thrive. The treatment of the pancreatic failure is by pancreatic enzyme replacement, as in cystic fibrosis. It is a life threatening condition and several of the children reported have died despite full medical treatment.

SHORT STATURE

The short stature has been attributed to hypothyroidism and malabsorption. There have been suf-
Syndrome of the month

deficient cases of short children with normal thyroid function\(^1\) to know that hypothyroidism is not the cause. A poor nutritional state contributes to the short stature and the child will not grow well unless the pancreatic enzyme deficiency is treated.

Our patient had pituitary hypothyroidism, but as yet has not had further pituitary function tests. It is interesting to speculate that growth hormone deficiency may be the cause of the short stature in this syndrome. In the two necropsy reports,\(^5\) there is no mention of pituitary gland pathology.

Hypothyroidism

All three girls in the original report of Johanson and Blizzard\(^1\) were hypothyroid. They stated that the hypothyroidism may be acquired rather than congenital, as one of their patients had a normal bone age at birth and her thyroid function was not as depressed as in the older patients. Subsequently six out of the 22 reported cases have been found to have reduced thyroid function. The results may be difficult to interpret because in severely malnourished children there will be depression of the thyroid binding globulin. The additional patient with the Johanson-Blizzard syndrome we present here had normal thyroid function, including a TRH test at the age of eight weeks. By the age of six months he had a low T4 (29 nmol/l) and low TSH (1.5 mU/l) indicating pituitary hypothyroidism.

The true aetiology of the hypothyroidism has not been determined. Thyroid autoantibodies are not present. At necropsy\(^5\) the thyroid gland was atrophic with colloid distension in a child known to be hypothyroid, but normal\(^6\) in a euthyroid child. The growth failure, deafness, and mental retardation have also been considered in terms of the hypothyroidism. However, there are sufficient children with normal thyroid function to know that hypothyroidism is unlikely to be the cause, though it can contribute if allowed to go untreated.

Mental Retardation

Thirteen out of the 22 children reported have been developmentally delayed. This is an underestimate as infants have died in the neonatal period. The cause is obscure. Daentl et al.\(^5\) showed focal migrational defects in the brain at necropsy but this was not confirmed by Moeschler et al.,\(^9\) who found the brain to be small but structurally normal. There is also no clear relationship between mental retardation and hypothyroidism. As pointed out by Moeschler and Lubinsky,\(^9\) the patients of Schusseim et al.\(^9\) and Sismansis et al.\(^9\) were severely retarded but neither microcephalic nor hypothyroid. The degree of retardation cannot be predicted. The patient of Day and Israel\(^10\) showed mild developmental delay and that of Townes\(^11\) was reported as “relatively normal” at three and a half years, although by 12½ years she needed special education. The brother and sister reported by Moeschler and Lubinsky\(^9\) were normal at two and a half and two years. Severe retardation was found in the patients of Daentl et al.\(^5\) Baraitser and Hodgson,\(^12\) and Mardini et al.\(^13\)

Anorectal Anomalies

As shown in the table, 11 of the reported children with the Johanson-Blizzard syndrome had anorectal abnormalities. In the majority of cases this was an imperforate anus. These children come to medical attention early and the initial surgical management is the fashioning of a transverse colostomy. It is important that poor weight gain in these infants is not attributed to the surgery but that malabsorption is recognised and treated.

Deafness

Hearing loss has been reported in 12 out of 22 patients. The case of Sismansis et al.\(^9\) was investigated in detail. There was a severe sensorineural hearing loss with associated absent vestibular function, but the inner ears were structurally normal on polytomograms. There have been no further reports of more detailed radiological investigations. At necropsy\(^6\) the temporal bones were not studied.

Our patient has a symmetrical, moderately severe sensorineural hearing loss.

Other Features

Additional features listed in the table are abnormalities of dentition, genitourinary anomalies, and cardiac malformations. The dental findings have been well reviewed by Zerres and Holtgrave.\(^14\) The children have delayed eruption of teeth, which are small but normal in shape. The genitourinary anomalies were striking in the three girls originally reported,\(^1\) two of whom had a single urogenital orifice, but other children have not had major structural problems. A congenital heart defect has been reported in only three of the children, two of whom were sibs reported by Helin and Jodal\(^15\) with situs inversus. Minor abnormalities of the lacrimal duct have also been recorded.

Differential Diagnosis

The diagnosis of the Johanson-Blizzard syndrome is not difficult when all the features are present. Hypoplasia of the alae nasi occurs in the oculo-dentodigital syndrome,\(^16\) aplasia cutis congenita of the scalp in the Adams-Oliver syndrome,\(^17\) and pancreatic malabsorption in the Shwachman-Diamond syndrome, but these should not prove to be diagnostic problems.
Counselling

There is strong evidence for autosomal recessive inheritance. Affected sibs have been described by Moeschler and Lubinsky,8 Day and Israel,10 Helin and Jodal,15 and Bresson et al.18 Parental consanguinity has been reported by Schussheim et al,9 Sismanis et al,7 Mardini et al,13 and Bresson et al.18

A more difficult problem in counselling is that of predicting the degree of mental retardation, the presence of severe structural lesions, and the success in treating the pancreatic exocrine defect. There have been no reports of prenatal diagnosis to date. At present one could offer a high resolution ultrasound scan in the hope of detecting the distinctive facial features and any structural abnormalities, such as the cardiac or urogenital lesions.

Prognosis

In the family of Mardini et al,13 all three patients died in infancy from complications of malabsorption and failure to thrive. The girl reported by Townes3 and Townes and White4 was still alive at the age of 12 years nine months. She had short stature, no permanent teeth, a sigmoidostomy because of an imperforate anus, and she required pancreatic enzyme supplements with her meals. She had mild mental retardation. If the pancreatic malabsorption problems are overcome the child can survive infancy, but is likely to require prolonged medical supervision. Even when given the best medical attention these children may develop severe problems associated with hypoproteinaemia, namely infections and oedema, which can lead to death in childhood.

References

17 Adams FH, Oliver CP. Hereditary deformities in man due to arrested development. J Hered 1945;36:3-7.

Correspondence and requests for reprints to Dr Jane A Hurst, Department of Clinical Genetics, Institute of Child Health, 30 Guilford Street, London WC1N 1EH.
Johanson-Blizzard syndrome.

J A Hurst and M Baraitser

J Med Genet 1989 26: 45-48
doi: 10.1136/jmg.26.1.45

Updated information and services can be found at:
http://jmg.bmj.com/content/26/1/45.citation

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/