typic expression in families with identical X chromosome abnormalities and non-random inactivation are the result of the differences in the genetic content of the normal, active X. The mental retardation or dysmorphic features or both in the proband could, therefore, be the result of the expression of genes on the normal X which is active in all the cells.

References

Correspondence and requests for reprints to Mrs I C S Barnes, Centre for Human Genetics, 117 Manchester Road, Sheffield S10 5DN.

Martsolf's syndrome in a non-Jewish boy

P STRISCIUGLIO*, M COSTABILE*, M ESPOSITO†, AND S DI MAIO*
Department of Paediatrics* and Institute of Public Medicine and Social Security†, II Faculty of Medicine, University of Naples, Naples, Italy.

SUMMARY Martsolf's syndrome has been described in Jewish people. We describe a patient of non-Jewish ancestry who has minor differences from other patients. The possible pattern of inheritance is discussed.

In 1978, Martsolf et al. described two brothers, born to consanguineous Jewish parents, with severe mental retardation, cataracts, short stature, and primary hypogonadism. Another Jewish family with the same syndrome has recently been described. We describe here a non-Jewish boy, to clarify the clinical picture of this syndrome further and to determine its mode of inheritance which is still uncertain.

Case report

The proband was a 13 month old male, born to a G1 P1 A0 20 year old woman after an uncomplicated term pregnancy. There was no exposure to any known teratogenic agents during pregnancy. Delivery was uncomplicated and spontaneous. His birth weight was 2100 g. The parents, of non-Jewish origin, were healthy and non-consanguineous.

There was no family history of other congenital malformations. At three months of age, the patient was admitted to hospital because of bronchopneumonia and retardation of growth. On this occasion bilateral cataracts were noted and at the age of seven months he underwent a surgical operation for these. At 13 months of age, he was admitted to our hospital because of growth and psychomotor retardation. On admission, physical

FIG 1 The proband at 13 months of age.
examination showed a boy with dysmorphic features (fig 1). His weight was 7000 g (<3rd centile), length 74.4 cm (10th centile), and head circumference 42.5 cm (<3rd centile). He had brachycephaly, flat occiput, low nasal bridge, mild micrognathia, low posterior hairline, normal philtrum, normal tongue, absence of hypotelorism, and a high arched palate. Pectus excavatum with normal nipples and mild lumbar lordosis were present as well as lax finger joints. Dermatoglyphic analysis showed absence of simian lines on the palms which were otherwise normal and six whorls and four ulnar loops on the fingertips; the toenails were normal. Bilateral cryptorchidism was present (fig 2), but the penis was normal (stretched penile length 5 cm). Neurological evaluation showed psychomotor development corresponding to six months of age. X-ray and cardiovascular studies were normal. TORCH and urinary amino acid, mucopolysaccharide, and oligosaccharide patterns were normal. Basal values of FSH (2.7 mU/ml), LH (5.7 mU/ml), and testosterone (10 ng/dl) were normal for age. Leydig cell reserve after HCG stimulation test (2000 UI x three days) was normal (testosterone 200 ng/dl). Chromosome analysis showed a normal male karyotype.

Discussion

Martsolf's syndrome with its rather non-specific features is a very difficult syndrome to diagnose. However, the presence of severe mental retardation, cataracts, short stature, microcephaly and bilateral cryptorchidism suggest that our patient has the syndrome, despite some minor differences (table).

In our young patient the principal clinical signs of the syndrome are already present and his dermatoglyphic pattern is similar to those of other patients. However, he differs from some of the patients described previously in whom other clinical signs were present besides the cataracts, mental retardation, and hypogonadism.

Our patient, although having bilateral cryptorchidism, has a normal reserve of Leydig cells so far; follow up will be necessary to show primary...
involvement of the gonads. In contrast, the patients of Martsolf et al1 showed clear evidence of primary hypogonadism. Possible hypogonadotrophic hypogonadism cannot be ruled out as a cause of hypogonitalism in the patients of Sanchez et al.2 Finally, our case, the only patient of non-Jewish ancestry reported so far, points to the likelihood that this syndrome does not affect only Jewish people. The fact that our patient is also male suggests two possible patterns of inheritance: X linked recessive inheritance or autosomal recessive inheritance with expression limited to males. However, the fact that only males seem to be affected might be a coincidence, since very few cases have been reported. It is evident that further reports are necessary in order to establish the exact pattern of inheritance, to clarify the type of hypogonadism and the clinical picture of this syndrome, and to discover whether this new syndrome affects mainly Jewish people.

References

Correspondence and requests for reprints to Dr Pietro Strisciuglio, Clinica Pediatrica, II Facoltà di Medicina e Chirurgia, Via S Pansini 5, 80131 Naples, Italy.
Martsolf’s syndrome in a non-Jewish boy.

P Strisciuglio, M Costabile, M Esposito and S Di Maio

doi: 10.1136/jmg.25.4.267

Updated information and services can be found at:
http://jmg.bmj.com/content/25/4/267

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/