Book reviews

Journal of Medical Genetics 1988, 25, 788–792

Human Gene Mapping 9

It is a measure of the rapid pace of advance in gene mapping that those who attended the Paris meeting of Human Gene Mapping 9 in September 1987 should have been impatiently awaiting its publication. Its arrival in May 1988 (though carrying a 1987 publication date) gives plenty of material to consult, and some to read, between now and Human Gene Mapping 9-5 and 10, held later this year and in 1989 respectively.

The sheer amount of information in this volume makes one realise how much work has gone into it; for this the organiser and publishers deserve much credit, as do the committee chairmen and the computing staff responsible for most of the contents.

The long hallowed format of division into committees for specific groups of chromosomes has held up remarkably well, though the chapter on mapping by DNA techniques comes close to being submerged by the flood of new data. The abstracts of posters give much new information though, as with all abstracts, there is a danger that they will be cited as definitive, which is often not the case.

Future organisers will have to ask for whom these volumes are intended. Until now, and including the present volume, they are written and compiled almost exclusively for the research worker in the gene mapping field. However, the pace inevitably means that these workers will be kept informed by personal contact, small workshops, and on line computerised systems. Those who really need the volume are other workers in human genetics, and the style and format are not exactly 'user friendly' for such people, whether scientists or clinical geneticists. With careful planning, Human Gene Mapping 10 could be attractive to this wider audience, without losing its value as a reference source for gene mappers.

Peter S Harper

Fetal and Neonatal Pathology

This book is aimed at the histopathologist whom Dr Keeling claims is among the last of the generalists in hospital practice. Certainly the clinical geneticist, whose specialty encompasses disorders of all body systems in all age groups, should own a copy. From a genetic viewpoint this is the best fetal and neonatal pathology book around, in spite of the fact that many of the authors fail to mention the contribution which clinical geneticists can, and in many regions already do, make to examination, investigation, and diagnosis in fetuses and newborns.

The reason I liked it so much is that there is uniformity of style and organisation of the chapters; the illustrations and line drawings are excellent and the chapters are divided up into digestible packages with tables to pick out salient points. Mechanisms leading to pathological outcomes are discussed and there is a good reference section with each chapter.

The book is well organised into two major sections; the first 15 chapters deal with methodology of various examinations, epidemiology, and the pathology of relatively commonly encountered situations such as prematurity, asphyxia, infections, and hydrops. The last 13 chapters are concerned with particular organ systems, each written by a contributor with a special interest and expertise.

Certain chapters deserve special mention, including Dr Keeling’s own contributions on hydrops, asphyxia, and methodology of examination and the clearly illustrated chapter on malformations of the CNS by Michael Laurence.

My criticisms are few: there is no mention of 13q— and retinoblastoma, or 11p— and aniridia in the section on ‘developmental anomalies of the eye in specific chromosome defects’; in the section on the endocrine system Beckwith-Wiedemann syndrome is credited with recessive inheritance and Zellweger syndrome’s underlying aetiology is said to be unknown with no mention of peroxisomes.

All regional genetic centres should buy a copy for their libraries and those clinical geneticists with a special interest in fetal and neonatal medicine may wish to invest in a personal copy.

Dian Donnai

Molecular Biology of Homo Sapiens

I am tempted to unleash a flood of superlatives about this book; instead I will simply describe it as...
The 'Practical Approach' series of methods books, published by IRL, have been very successful. On my bookshelf I have six different volumes from this series and these provide guidance in topics as diverse as DNA cloning and the use of micro-computers. The latest volume on mammalian development, edited by M Monk, continues the excellent tradition. It could be argued that the title of this volume is slightly misleading; many developmental biologists will fail to find their favourite system described in this book. As stated in the preface by the editor, a better indication of the contents is mammalian molecular embryology, with nearly all the chapters concentrating on the analysis of mouse embryology (and pre-embryology). If you want to know how to look after mice, culture mouse embryos, karyotype mouse embryos, perform in situ hybridisations, make transgenic mice, perform biochemical microassays, and freeze mouse embryos consult this book. There is also a chapter describing in vitro fertilisation methods in humans; this chapter is probably not intended for the neophyte. Unusually for a methods book, there is a brief introduction not contributed by the editor. In three pages A McLaren manages to summarise the book, to describe the history of mammalian developmental biology, and to argue that the term embryo should be reserved for the period after gastrulation (preimplantation ‘embryos’ are pre-embryos). All of this is done with clarity and wit. Perhaps Dr McLaren can be persuaded to review books for the Journal of Medical Genetics.

Any research worker interested in studying mouse embryos and pre-embryos should purchase this book as a companion to the Cold Spring Harbor Manual Manipulating the mouse embryo by B Hogan, F Constantini, and E Lacy. If you wish to use mouse teratocarcinomas and embryonic stem cells you will have to purchase in addition the Practical Approach volume edited by E Robertson. Together these books will save you hours of fruitless searching in the abbreviated ‘methods’ sections of primary references.

P N Goodfellow

The Molecular Basis of Blood Diseases

Generally the molecular biological aspects of blood and its pathology have been included, often almost reluctantly, as part of clinically or laboratory based haematology texts. The molecular basis of blood diseases is one of the first books to attempt to redress the balance. The Editors have assembled together a most eminent group of authors and, generally, allowed them free rein to describe the monumental. Monumental not so much for its size, though it is impressive enough with 128 chapters and over 1200 pages, but literally a monument: a proud public statement of the hopes and achievements of human molecular genetics in 1986.

The individual five to ten page chapters are not reviews of a particular topic, but accounts of the work of one group. Some describe famous achievements (for example, cloning the gene for chronic granulomatous disease, knowing nothing except its position on the X chromosome), others describe technical advances (for example, making linking and jumping libraries). The unkund publishers sent only volume 1; judging from this, the work described ranges from excellent to brilliant, and the descriptions from very good to superb. Papers are grouped into sections: the human gene map, genetic diagnosis, human evolution, drugs made of human genes, receptors, human cancer genes, and gene therapy. Each section gives a selection of progress reports from major growth points, without attempting to cover all aspects of its title.

This is one of those happy books where the whole is much more than the sum of the parts. Good though the individual contributions are, what makes the book outstanding is that everyone (well, almost everyone) is there. The result is a sort of comprehensive snapshot of human molecular biology research in 1986. It prompts all sorts of interesting comparisons with the last Cold Spring Harbor symposium on human genetics in 1964. It will be of enduring interest to historians as a description of what researchers were doing in what are surely the vintage years of human genetics—when it is the most exciting area in all of science, and before it degenerates into poring over an enormous tome printed with 3 billion As, Gs, Cs, and Ts. Is the book also useful to the working scientist? The answer is undoubtedly yes. So many of the chapters describe important new ideas and techniques that it is a first rate tool for broadening one’s horizons and for strategic thinking. It will be many years before the historians can have it to themselves. Meanwhile, if your local historian is hogging it, forgo a few units of NotI and buy your own copy.

Andrew P Read
Molecular Biology of Homo Sapiens

Andrew P Read

doi: 10.1136/jmg.25.11.788-b

Updated information and services can be found at:
http://jmg.bmj.com/content/25/11/788.3.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/