tion. AJJ is a Lister Institute Research Fellow. The minisatellite probes are the subject of Patent Applications and commercial enquiries should be addressed to the Lister Institute of Preventive Medicine, Brockley Hill, Stanmore, Middlesex HA7 4JD, UK.

References

Correspondence and requests for reprints to Dr C G P Mathew, Institute of Cancer Research, Haddow Laboratories, Clifton Avenue, Sutton, Surrey SM2 5PX.

Linkage analysis of neurofibromatosis

S KITTUR*, M L LUBS†, M BAUER†, A CHAKRAVARTI‡, AND H KAZAZIAN*

From *the Department of Pediatrics, Johns Hopkins Institution, Baltimore, Maryland; †the Department of Genetics, University of Miami, Florida; and ‡the Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

SUMMARY Linkage analysis of neurofibromatosis was performed using genes on chromosomes 1, 8, 11, and 12. No linkage was found between NF and C-myc, AT3, IGF-1, PTH, and gamma globin genes. Evidence for linkage was found between C-ets 1, on the long arm of chromosome 11 and NF in two families with a lod score of 1.88 at θ=0. More families are being studied to confirm this linkage.

Neurofibromatosis (NF) is one of the common autosomal dominant neurological disorders with a frequency of approximately 1 in 3000. The disease is mainly characterised by café au lait spots and neurofibromas. These patients have an unusually high frequency of malignancy compared to the normal population. The intriguing question is, what gene do they carry that predisposes them to malignancy? In order to localise the gene for NF, linkage analysis using DNA markers was performed.

Three multi-generation families shown in table 1 were used.

Oncogene C-myc, insulin like growth factor-1, antithrombin-3, parathyroid hormone, and gamma globin genes1-3 were not linked to neurofibromatosis in our families. The lod scores are shown in table 2.

We found a positive lod score of 1.88 with oncogene C-ets 1° in two informative families (no recombinants observed in six informative meioses). These data provide suggestive evidence that the NF
gene is linked to C-ets 1 on the long arm of chromosome 11 in these families. More families are being studied to confirm the linkage of NF to C-ets 1.

References


Correspondence and requests for reprints to Dr Smita Kittur, Department of Pediatric Genetics, CMSC 10–110, Johns Hopkins Hospital, 600 N Wolfe Street, Baltimore, Maryland 21205, USA.

Genetic linkage studies with neurofibromatosis: the question of heterogeneity

M ANNE SPENCE*, ROBERT S SPARKES†, DILYS M PARRY‡, SHERRI J BALE‡, VICTORIA CORTESSIS*, AND JOHN J MULVIHILL‡
From *the Mental Retardation Research Center, Department of Psychiatry, and †the Department of Medicine, UCLA School of Medicine, Los Angeles, California 90024, and ‡the Clinical Epidemiology Branch, National Cancer Institute, Bethesda, Maryland 20205, USA.

SUMMARY: Three new families are reported for standard gene linkage markers and classical peripheral neurofibromatosis (Von Recklinghausen disease). Additional data are summarised for the exclusion map. One family gives slight evidence of close linkage with the Gc locus on chromosome 4, raising again the question of possible genetic heterogeneity in NF.

Received for publication 23 March 1987.
Accepted for publication 24 March 1987.
Linkage analysis of neurofibromatosis.

S Kittur, M L Lubs, M Bauer, A Chakravarti and H Kazazian

doi: 10.1136/jmg.24.9.526

Updated information and services can be found at:
http://jmg.bmj.com/content/24/9/526

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/