The HLA linked iron loading gene in an Afrikaner population

From *the MRC Iron and Red Cell Metabolism Unit, Department of Medicine, University of the Witwatersrand, Johannesburg; †MRC Human Ecogenetics Research Unit, Department of Human Genetics, School of Pathology, South African Institute for Medical Research, University of the Witwatersrand, Johannesburg; ‡MRC National Research Institute for Nutritional Diseases, Tygerberg; §Provincial Laboratory for Tissue Immunology, Cape Town; and ||Department of Haematology, University of Cape Town, Observatory, South Africa.

SUMMARY The serum ferritin concentration was used as a screening test to identify the presence of iron overload in 599 Afrikaans subjects (300 males and 299 females) living in the South Western Cape, South Africa. Seventeen of the males with concentrations greater than 400 μg/l were re-evaluated three and five years later. Serum ferritin concentrations were measured again and further diagnostic procedures were carried out. These included an assessment of alcohol intake and measurements of serum γ glutamyltransferase, the percentage saturation of transferrin, and HLA-A,-B,-C, and -DR loci typing on the subjects as well as their families. Liver biopsies were performed on some affected subjects.

Of the original 16 index subjects, four were diagnosed as homozygous for the HLA linked iron loading gene which is responsible for the clinical disease idiopathic haemochromatosis. Six appeared to be heterozygotes, three were heterozygotes who were also abusing alcohol, and two did not fit into any of the diagnostic groups. The calculated gene frequency was 0-082, with an expected heterozygote frequency of 0-148. The fact that no females were identified in the study suggested that the diagnostic criteria for homozygosity (serum ferritin >400 μg/l and % saturation >60%) were set too high. The data were therefore recalculated for the 300 males; when this was done the gene frequency was 0-115 and the heterozygote frequency 0-204.

Two subjects were diagnosed as homozygotes in the study of family members and 37 as heterozygotes (33 definite and four probable). Both the homozygotes and nine of the heterozygotes showed mild to moderate disturbances of iron metabolism. There was considerable overlap between the phenotypic expression in these nine heterozygotes and the homozygotes, probably as a result of setting the threshold for the serum ferritin concentration at the relatively high value of 400 μg/l. By doing this a small subset of heterozygotes with biochemical abnormalities was identified.

The results of the present pilot study suggest a high frequency of the HLA linked iron loading gene in the Afrikaner population of the South Western Cape.

Idiopathic haemochromatosis (IHC) has been shown in recent years to be inherited as an autosomal recessive disorder, with the susceptibility locus on chromosome 6 in close proximity to the HLA-A locus.1-5 The locus is strongly associated with HLA-A3 and B7 in all geographical areas studied and with HLA-A3 and B14 in France, Australia, and probably England.6 IHC was previously considered to be a relatively rare disorder,7-9 but recent studies which have exploited HLA data suggest that the gene frequency in Caucasoids is between 0-05 and 0-09, with a heterozygote frequency of 10 to 16% and a disease frequency of between 3 and 8 per 1000.10-25 While these figures were mostly derived from the study of patients with the clinically manifest disease and affected family
The HLA linked iron loading gene in an Afrikaner population

members, there are four investigations in which a similar high prevalence rate has been shown in Caucasoids using epidemiological screening. The ability to detect subjects who are homozygous for the HLA linked iron loading gene using these new approaches has led to the realization that the pattern of clinical manifestation is often considerably less severe than was apparent from previous clinical studies. Many homozygous persons are asymptomatic and the classic triad of hepatomegaly, skin pigmentation, and diabetes mellitus is uncommon.

If the potentially lethal HLA linked iron loading gene is as prevalent as the current evidence suggests, then concerted attempts should be made in epidemiological surveys to identify asymptomatic homozygotes by applying screening tests with a high sensitivity and predictive accuracy. In this regard, the percentage transferrin saturation and the serum ferritin concentration are of particular value. The transferrin saturation is high in the majority of affected adults, irrespective of the degree of iron overload, while the serum ferritin concentration bears a linear relationship with the total stores of iron in the body and can therefore be used to identify subjects with iron overload. Serum ferritin concentrations are, however, often inappropriately raised in liver disease, leukaemias, lymphomas, cancers, and inflammatory conditions, but most of these diseases would have little impact on the results of epidemiological screening studies carried out on apparently healthy subjects in western countries. The one exception is alcoholic liver disease. The serum ferritin concentration has been shown to be significantly raised after excessive alcohol consumption and this might be expected to interfere with the specificity of the test. The problem can, however, be largely overcome if the level of serum γ glutamyltransferase (γGT) is measured in subjects with raised ferritin levels, since we have shown that a serum ferritin concentration above 300 μg/l is very unlikely to be the result of alcohol induced hepatic damage if the γGT is less than 50 U/l. In the present study the serum ferritin and γGT were used in an attempt to determine the frequency of the IHC gene in a predominantly Afrikaner population living in three districts in the South Western Cape. The percentage transferrin saturation was not measured in the initial screening because of the very small quantities of serum available.

Materials and methods

Study population
During the first half of 1979 a community coronary risk factor survey (CORIS) was carried out in three South Western Cape Province districts, all of which were within 200 miles of Cape Town. More than 90% of the white inhabitants in this area are Afrikaans speaking. A group of 7188 Caucasoids was studied, of which 3357 were male and 3831 were female. A subgroup of 599 subjects was then randomly selected for the present prevalence study. The subgroup, which was stratified according to sex and to 10 yearly age intervals (range 15 to 64 years), was made up of 300 males and 299 females. Blood samples which had been frozen at −20°C when the original study was done were sent to our laboratory in Johannesburg for serum ferritin estimations. An arbitrary serum ferritin concentration of 400 μg/l or greater was chosen to identify subjects with iron overload. Concentrations of γGT, serum iron, and total iron binding capacity (TIBC) were then measured in those with raised serum ferritin concentrations. Three years later, in 1982, a second sample was collected from most of the subjects with initially raised serum ferritin concentrations and all the tests were repeated. At the time of the second blood sampling special note was taken of the daily alcohol intake, the use of iron tablets, and a history of blood donation or porphyria. The subjects were more extensively investigated at the end of 1983 and in July 1984. Their available first and second degree relatives were clinically examined for manifestations of IHC, with special attention being directed to the sibs of identified subjects. Blood samples were collected for HLA typing and for γGT, serum iron, TIBC, and serum ferritin. After obtaining informed consent, liver biopsies were performed on 12 subjects in whom biochemical derangements were such that the homozygous form of IHC was strongly suspected or where homozygotes could not be differentiated from heterozygotes.

Methods

Techniques
The serum iron concentration and TIBC were performed according to the recommendations of the International Committee for Standardization in Haematology. Serum ferritin concentrations were measured by an enzyme linked immunoabsorbent assay, while the serum γGT was estimated by the method of Persijn and Van der Silk. HLA-ABC typing of T lymphocytes was carried out using the technique described by Terasaki et al and HLA-DR typing of B lymphocytes by that of Bodmer et al. The B lymphocytes were isolated by a thrombin nylon wool method described by Danilovs et al. The amount of iron present in liver biopsy specimens stained with Prussian blue was assessed.
using previously described criteria41 and the non-
haem iron concentrations were measured by the
method of Torrance and Bothwell.42

Diagnostic Groups
We attempted to assign the 16 subjects with initial
serum ferritin concentrations >400 µg/l to five
diagnostic groups on the basis of the percentage
transferrin saturation and γGT. The groups were as
follows: (a) probable homozygotes when the trans-
ferrin saturation was greater than 60% and the γGT
less than 50 U/l; (b) probable heterozygotes when
the transferrin saturation was less than 60% and the
γGT was less than 50 U/l; (c) alcohol abusers when
the transferrin saturation was less than 60% and the
γGT greater than 50 U/l; (d) a mixed group of
subjects with criteria of both iron overload and
alcohol abuse; and (e) a non-diagnosable group in
which subjects were included who could not be
fitted into the other groups.

Genotype Assignment
Brothers and sisters of an affected homozygote who
possessed the same haplotypes were designated
homozygous affected (HH). Sibs, parents, and
offspring with one haplotype in common with the
homozygote were considered heterozygous (HO).
Other relatives with neither haplotype in common
were considered to be homozygous normal (OO).

Results

Serum ferritin concentrations in the study population
The serum ferritin values of the 300 male subjects
were compared to those obtained in 299 females
using analysis of covariance, with age as the
covariate. The levels were significantly greater
among the male group (F 76.5, p<0.0001). In order
to examine this difference more closely the results of
the serum ferritin determinations were grouped into
10 yearly age intervals from 15 to 64 years. The
geometric means and standard deviation ranges
for males and females are shown in the figure.
Comparisons at each age interval showed this
difference to be present and highly significant in all
but the youngest and oldest age groups (p<0.001 for
all intervals between 20 and 59 years).

Serum ferritin concentrations greater than 400 µg/l
Four subjects were regarded as homozygotes on the
basis of the transferrin saturation and serum
ferritin concentrations as defined previously (table
1). The serum ferritin concentration remained fairly
constant in case 1 (table 1) over the period of
observation but rose in two others (cases 2 and 3,
table 1). The fourth homozygote (case 4, table 1)
was found to have been diagnosed as having IHC
several years previously and had undergone repeated
venesections. The raised γGT in this subject
suggested that alcohol abuse may have contributed
to the marked rise in the serum ferritin concentra-
tions between 1979 and 1984. With the exception of
this subject, none of the others showed any clinical
manifestations of IHC. Liver biopsies were per-
formed on two of these homozygotes and hepatic
iron concentrations were found to be mildly raised
in case 1 and moderately raised in case 2 (table 2),
the figures obtained suggesting hepatic iron loads
of about 1.5 and 4.5 g, respectively. The presence of
increased iron stores of about two to three times
normal was confirmed in the third subject (case 3)
by submitting him to repeated venesections.

The seven subjects regarded as heterozygotes
(cases 5 to 11 in table 1 and index subjects in table 3)
were all clinically normal. Serum ferritin concentra-
tions rose progressively over the period of obser-
vation in six of them (cases 5 to 10) with the mean
rise being about 50% (table 1). A marked rise in
the seventh (case 11) to 3200 µg/l was probably attribu-
table to concomitant alcohol abuse. Liver biopsies
were performed on six of the subjects and all
showed increased concentrations of non-haem iron
which were in the same range (±1000 µg/g) as those
noted in the homozygotes (table 3). Liver architec-
ture was normal, except for some fatty changes in
two (cases 10 and 11).
TABLE 1 Follow up data on the 16 subjects found to have serum ferritin concentrations above 400 μg/l. They have been assigned to tentative diagnostic groups based on criteria given in the text (see Materials and methods).

<table>
<thead>
<tr>
<th>No</th>
<th>Sex</th>
<th>Age</th>
<th>Serum ferritin (μg/l)</th>
<th>% saturation</th>
<th>Alcohol intake*(g/day)</th>
<th>Serum γGT (U/l)</th>
<th>Diagnostic group^</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>46</td>
<td>617</td>
<td>553</td>
<td>551</td>
<td>84</td>
<td>64</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>39</td>
<td>416</td>
<td>550</td>
<td>612</td>
<td>98</td>
<td>96</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>55</td>
<td>442</td>
<td>773</td>
<td>970</td>
<td>96</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>64</td>
<td>623</td>
<td>—</td>
<td>—</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>66</td>
<td>440</td>
<td>506</td>
<td>750</td>
<td>56</td>
<td>91</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>46</td>
<td>566</td>
<td>579</td>
<td>765</td>
<td>68</td>
<td>54</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>55</td>
<td>431</td>
<td>473</td>
<td>630</td>
<td>48</td>
<td>55</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>67</td>
<td>503</td>
<td>596</td>
<td>508</td>
<td>58</td>
<td>49</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>59</td>
<td>417</td>
<td>549</td>
<td>623</td>
<td>36</td>
<td>35</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>67</td>
<td>423</td>
<td>524</td>
<td>633</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>54</td>
<td>481</td>
<td>1189</td>
<td>3280</td>
<td>60</td>
<td>96</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>65</td>
<td>1412</td>
<td>261</td>
<td>197</td>
<td>43</td>
<td>40</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>65</td>
<td>533</td>
<td>388</td>
<td>261</td>
<td>54</td>
<td>38</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>63</td>
<td>464</td>
<td>386</td>
<td>825</td>
<td>56</td>
<td>59</td>
</tr>
<tr>
<td>15</td>
<td>M</td>
<td>60</td>
<td>453</td>
<td>326</td>
<td>844</td>
<td>47</td>
<td>49</td>
</tr>
<tr>
<td>16</td>
<td>M</td>
<td>56</td>
<td>708</td>
<td>268</td>
<td>—</td>
<td>46</td>
<td>10</td>
</tr>
</tbody>
</table>

Based on questionnaire in 1979.
^HH=homozygous, HO=heterozygous, AA=heterozygous-alcohol abuse, ND=non-diagnostic.
*Original serum ferritin was >400 μg/l but on retesting was 366 μg/l.

TABLE 2 Biochemical (1984 figures), histological, and HLA data on the four homozygous subjects who were found in the epidemiological survey and on two further subjects identified in the family study. (The numbers assigned to family members are those of the related index subjects.)

<table>
<thead>
<tr>
<th>Family No</th>
<th>Age</th>
<th>Sex</th>
<th>HLA haplotype</th>
<th>% saturation</th>
<th>Serum ferritin (μg/l)</th>
<th>Serum γGT (U/l)</th>
<th>Hepatic iron (0–4)</th>
<th>Fatty changes</th>
<th>Hepatic iron (μg/g wet weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>46</td>
<td>M</td>
<td>A24(9),B7,Cw7,DR2</td>
<td>64</td>
<td>551</td>
<td>26</td>
<td>2+</td>
<td>1142</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>39</td>
<td>M</td>
<td>A24(9),Bw39(16),Cw3,DR2 A2,Bw44(12),Cw3,DR2</td>
<td>96</td>
<td>612</td>
<td>70</td>
<td>1.5+</td>
<td>3074</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>55</td>
<td>M</td>
<td>A3,B7,Cw7,DR2 A3,B7,Cw7,DR2</td>
<td>75</td>
<td>976</td>
<td>46</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>4*</td>
<td>64</td>
<td>M</td>
<td>A2,B35,Cw4,DRw6 A1,B7,Cw7,DR7</td>
<td>96</td>
<td>1057</td>
<td>105</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Family members</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>28</td>
<td>F</td>
<td>A24(9),Bw39(16),Cw3,DRw6 A2,Bw44(12),Cw3,DR2</td>
<td>76</td>
<td>217</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>8*</td>
<td>28</td>
<td>M</td>
<td>A2,B44(12),Cw3,DR2 A2,Bw57(17),Cw6,DR7</td>
<td>75</td>
<td>596</td>
<td>1.5+</td>
<td>—</td>
<td>1046</td>
<td></td>
</tr>
</tbody>
</table>

*Upper limit of normal=±350 μg/g.
*Known HIC who had been extensively venesected previously.
*The index case was diagnosed as a heterozygote (see table 3).

The alcohol abusers were characterised by concomitant changes in the serum ferritin and γGT concentrations (table 1). For example, in one (case 12) a drop in the serum ferritin concentration from 1412 to 197 μg/l was paralleled by a drop in the γGT from 222 to 33 U/l. It was not possible to assign the last two subjects (cases 15 and 16, table 1) to any of the diagnostic groups.

FAMILY STUDIES
In all, a total of 87 relatives of identified homozygotes was examined and two homozygotes were diagnosed on the basis of chemical findings and HLA markers (table 2). The one in family 2 was the 28 year old sister of an identified homozygote. She had a transferrin saturation of 85% but no increase in the serum ferritin concentration. The other subject was a 28 year old male in family 8, whose father had been diagnosed as a heterozygote. The fact that the 28 year old son had a transferrin saturation of 75% and a serum ferritin concentration of 596 μg/l suggested that he was a homozygote, in
TABLE 3 Biochemical, histological, and HLA data on the seven heterozygous subjects who were found in the epidemiological survey and on other probable heterozygotes identified in the family study. (The numbers assigned to family members are those of the related index subjects.)

<table>
<thead>
<tr>
<th>Family No</th>
<th>Age</th>
<th>Sex</th>
<th>HLA haplotype</th>
<th>% saturation</th>
<th>Serum ferritin (µg/dl)</th>
<th>Serum γGT (U/l)</th>
<th>Hepatic histology</th>
<th>Hepatic iron (µg/g wet weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index subjects 5</td>
<td>66</td>
<td>M</td>
<td>A1,B4, Cw8, DR3/7</td>
<td>51</td>
<td>750</td>
<td>19</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>M</td>
<td>A24(9), Bw62(15), Cw3, DRw6</td>
<td>44</td>
<td>765</td>
<td>12</td>
<td>1+</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>55</td>
<td>M</td>
<td>A11, Bw59(22), Cw3, DR1</td>
<td>55</td>
<td>650</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>66</td>
<td>M</td>
<td>A32, B38(16), Cw-</td>
<td>49</td>
<td>598</td>
<td>8</td>
<td>2+</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>59</td>
<td>M</td>
<td>A2, B44(12), Cw-</td>
<td>35</td>
<td>623</td>
<td>11</td>
<td>1+</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>67</td>
<td>M</td>
<td>A2, B51(5), Cw, DR1</td>
<td>35</td>
<td>633</td>
<td>17</td>
<td>0</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>54</td>
<td>M</td>
<td>A1, B6, Cw, DR7</td>
<td>96</td>
<td>3200</td>
<td>133</td>
<td>1-5+</td>
<td>Mild</td>
</tr>
</tbody>
</table>

Family members 2 | 63 | M | A24(9), Bw62(15), Cw3, DRw6 | 66 | 404 | 106 | — | — |
34	F	A24(9), Bw62(15), Cw3, DRw6	64	72	66	—	—	
38	M	A2, B44(12), Cw-	42	575	22	—	—	
50	M	A11, Bw35(22), Cw3, DRw9	57	2048	278	1+	Marked	1679
28	F	A1, B55(5), Cw3, DRw9	73	83	9	0	0	520
58	M	A2, B14, Cw3, DR1	35	826	12	—	—	
54	F	A32, B38(16), Cw-	42	636	12	—	—	
61	M	A11, Bw53(17), Cw6, DR7	37	400	28	—	—	
51	M	A11, Bw57(17), Cw6, DR7	82	269	39	1+	0	1046

*No fibrotic changes were found in any of the liver biopsies.

which case his mother must also have been carrying the HLA linked iron loading gene or determinant. Liver biopsy in the son revealed a hepatic iron concentration of 1046 µg/g (table 2) which is two to three times normal.

Thirty-three family members out of the 87 relatives tested were diagnosed as definite heterozygotes on the basis of genotype assessment. Fourteen were female and 19 male. Their mean age was 42 years (range 16 to 83). In addition, four subjects, all of whom were males, were diagnosed as probable heterozygotes. Three shared one haplotype with an index case and showed disturbances of iron metabolism, while one (in family 8) only had a biochemical abnormality (serum ferritin 826 µg/l). Nine of these heterozygous subjects (five definite and four probable) had abnormalities in iron metabolism, which are itemised in table 3. Table 3 also includes HLA data and some hepatic histological findings on them and the original seven index heterozygotes. Liver biopsies were carried out in only three of the ascertained relatives from families 6 and 11. There was a mild increase in iron stores in the two males, while the hepatic iron concentration was at the upper limit of normal in the female. The highest value was obtained in a subject (family 6) who appeared to be abusing alcohol (serum ferritin 2048 µg/l, serum γGT 278 U/l).

HLA TYPING

In terms of HLA typing, one of the four homozygotes had the haplotype HLA-A3B7 from both parents, while two others who had inherited B7 without A3 via one chromosome were heterozygous for B7 alone (table 2). As far as the seven heterozygous index subjects were concerned, one was heterozygous for the HLA-A3B7 haplotype and another was homozygous for HLA-B7 (table 3).

GENE FREQUENCY

Assuming that all the IHC homozygotes in this sample of 599 were ascertained, the frequency of the
gene for IHC is 0.082 (SE 0.020) given as the square root of the homozygote frequency. On the basis of this gene frequency and according to Hardy-Weinberg expectation, the proportion of heterozygotes in the population would be 0.148 or nearly 1 in 6. It was noteworthy, however, that all the subjects in the study who showed phenotypic abnormalities were males, suggesting that the serum ferritin cut-off point of 400 μg/l was too high to identify affected females. If the gene frequency is calculated using only the male population of 300 the frequency of the IHC gene becomes 0.115 (SE 0.029) and the expected heterozygote frequency 0.204 or 1 in 5.

Discussion

There is currently much interest in the early detection of subjects homozygous for the HLA linked iron loading gene that can lead to clinical IHC.10-25 Since intensive venesection therapy can prevent the development of organ damage such as cirrhosis.26 Out of the various epidemiological data that have been collected has come the realisation that the clinical spectrum of IHC is much wider than was previously appreciated. At one end is the fully developed disease, with skin pigmentation, cirrhosis, diabetes, and other manifestations of organ damage, while at the other there are subjects, usually females, with little or no clinical or biochemical evidence of increased body iron. In between, lie the majority of subjects, who show varying degrees of iron overload.26 Most of our knowledge on the phenotypic expression in affected homozygotes and heterozygotes has been derived from family studies in which affected subjects have been identified on the basis of HLA typing.5 11 17 43-46 In such studies it has been found that most heterozygotes can be identified among the relatives of iron loaded homozygotes only by inference. While the mean values for the various laboratory tests of iron metabolism have been found to be somewhat higher than normal in such heterozygotes, they tend to be closer to normal values than to those found in homozygotes.

These points have been raised in order to underline the difficulties that might be anticipated in interpreting the results obtained in any epidemiological study in which the starting point is the population at large and not clinically affected homozygotes. In this regard, there are two tests that have been shown to be of value, namely the percentage transferrin saturation and the serum ferritin concentration. The first is raised in homozygous IHC adults irrespective of the size of the body iron stores.44 while the second mirrors the size of these stores.9 Their predictive accuracy in identifying phenotypic expression in affected genotypes is obviously affected by variables which affect iron nutrition, such as age, sex, child bearing, and menstruation. Their specificity and sensitivity are also affected by the arbitrary threshold values which are chosen. In one family study a threshold value of 62% for transferrin saturation was found by discriminant analysis to have a predictive accuracy of 92% for homozygotes, while a raised serum ferritin concentration after logarithmic transformation had a predictive accuracy of only 71%.44 However, other workers have reported a normal transferrin saturation in 25% of subjects with iron overload.46 47 In addition, Bassett et al46 found that the serum ferritin concentration is useful in the early detection of the IHC gene and has a slightly higher predictive accuracy than the transferrin saturation in screening young adults for IHC. In passing, it should be mentioned that two families have been described in which the serum ferritin was found to be normal in a number of members despite increased iron stores.48 but this seems to be rare, occurring in no more than 5% of affected families.49

Because both tests are useful they have been combined in various ways in the four epidemiological studies that have been reported to date (table 4).20 21 24 25 While comparison of the results in Canada, Sweden, and the United Kingdom are complicated by variations in the criteria that were used, the conclusions were very similar. Estimates of the number of homozygotes in the communities studied were high, with frequencies varying between 0.24 and 0.5%.

In the present study a somewhat different approach was dictated by the fact that only very small volumes of serum were initially available for analysis. This meant that it was possible to measure the serum ferritin concentration but not the serum iron and total iron binding capacity. We chose a comparatively high arbitrary threshold value for the serum ferritin of 400 μg/l because we anticipated that minor rises would often be the result of alcohol abuse and not of iron overload.31 32 In all, 17 male subjects were identified in this way. At the outset it was realised that there are inherent dangers in using a continuously varying measure such as the serum ferritin concentration to identify homozygous IHC subjects. For this reason additional information was sought on each of those identified as having a raised serum ferritin concentration. Firstly, serum ferritin concentration was measured on a further two occasions over the following five years in all except the one subject who had died. Secondly, alcohol abuse was identified by direct questioning and repeated γGT estimations. Thirdly, the transferrin
saturation, a sensitive measure of homozygosity in adults, was estimated on at least two occasions. Finally, the subjects were evaluated clinically to exclude intercurrent illness.

Subjects with raised ferritin concentrations were assigned to one of several categories, the most important of which were homozygosity, heterozygosity, alcohol abuse, and a combination of alcohol abuse plus one of the other categories. Eleven subjects, four homozygotes and seven heterozygotes, were diagnosed in the initial survey as carrying the HLA linked iron loading gene and a further two homozygotes and 37 heterozygotes (33 definite and four probable) were diagnosed in studies on the families of affected subjects. The distinction between homozygosity and heterozygosity was based on the transferrin saturation, since the ferritin concentration alone did not discriminate between the two groups. Liver biopsies were done on eight of the index cases and on four of their relatives. The hepatic iron load in homozygotes was moderately raised, as it was in several of the heterozygotes. The fact that phenotypic expression in subjects identified as homozygotes was so similar to that in some heterozygotes may well be due to the fact that the threshold value for the serum ferritin concentration was set at the relatively high value of 400 µg/l. This approach would be expected to identify a small subset of heterozygotes with biochemical abnormalities overlapping with a mild asymptomatic homozygote population. Some support for this contention is supplied by the data of Bassett et al on serum ferritin concentrations in heterozygotes diagnosed in family studies. Fewer than 10% of male heterozygotes had serum ferritin concentrations greater than 400 µg/l. In the same study they noted that there was no tendency for iron to accumulate in the body in heterozygotes followed over a 16 year period. Our own finding of a moderate but progressive rise in the serum concentrations of all the heterozygous index cases is somewhat surprising and raises the question as to whether the group may have included homozygous subjects or whether complicating factors such as alcohol abuse were confusing the findings.

Although the numbers are small, no striking increase in the numbers of A3 containing haplotypes associated with the IHC gene was noted in the present study. Of the 14 haplotypes defined as being associated with the IHC gene (five homozygotes and four heterozygotes), HLA-A allele A3 was present only twice and this in homozygous form in the index case in family 3 (table 2). There was no known consanguinity in the parents of this case. The complete haplotype was A3,B7,Cw7,DR2 which is a classical Caucasoid one, common in the South African white population of the South Western Cape. The B7,Cw7,DR2 part of the haplotype was, however, found in association with the IHC gene in three other cases, twice with A2 and once with A24(9) (tables 2 and 3). These haplotypes could well have resulted from a crossover between the A locus and the IHC gene, C locus, B locus, D locus containing segment. Whether such a crossover occurred before or after the settling of the Cape by the Europeans is not possible to say.

In setting rigid criteria for the diagnosis of homozygotes in the present study we aimed at defining the minimum rather than the real gene frequency for the HLA linked iron loading gene in the Afrikaner population we were sampling. The calculated gene frequency of 0-082 is comparable to the estimated gene frequency of 0-088 in Australians. Phenotypic expression might also be expected to be similar, since both populations have a high meat consumption. By setting a high serum ferritin threshold no females were identified in the initial screen. In addition, the inclusion of subjects in the 15 to 19 year old age group further reduced the likelihood of phenotypic expression in affected

TABLE 4 The results of four epidemiological surveys designed to ascertain the prevalence of the HLA linked iron loading gene in different populations.

<table>
<thead>
<tr>
<th>Country</th>
<th>No of subjects (y)</th>
<th>Age range (y)</th>
<th>Screening criteria</th>
<th>Abnormal findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>1105</td>
<td>1-30</td>
<td>% saturation >55%, serum ferritin >90th centile</td>
<td>No of subjects</td>
</tr>
<tr>
<td>Sweden</td>
<td>30</td>
<td>30-39</td>
<td>% saturation >58%, serum ferritin >164 µg/l</td>
<td>6</td>
</tr>
<tr>
<td>Sweden</td>
<td>400</td>
<td>?</td>
<td>% saturation >70%, serum ferritin >200 µg/l</td>
<td>14</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1800</td>
<td>?</td>
<td>% saturation >48%, serum ferritin >200 µg/l</td>
<td>?</td>
</tr>
</tbody>
</table>

HH=homozygote. HO=heterozygote.
The HLA linked iron loading gene in an Afrikaner population

genotypes. On this basis, there seemed some justification for recalculating the gene frequency using the male sample of 300. When this was done, the very high figure of 0·115 was obtained. It should be noted that there are several genetic disorders, including porphyria variegata and familial hypercholesterolaemia, which occur with unusually high frequency in the Afrikaner population.51 52 and the present findings suggest that further, more detailed, studies should be done to find out whether IHC is another such condition. However, the demonstration that the IHC gene is not linked in the cis position to one particular HLA haplotype makes it very unlikely that its high frequency in the Afrikaner population is due to founder effect. In fact, among the five randomly ascertained IHC homozygotes no fewer than nine different haplotypes were found to be associated with the IHC gene. If the HLA-A and B loci are considered, then eight different haplotypes were evident. From these results it can be inferred that the IHC gene had already attained its high frequency in the populations of Holland, Germany, and France before 1652, the year in which the European settlement at the Cape began, and that it was introduced into the local population by a number of persons possibly at different times.

The fact that the estimated frequency of the IHC gene in the Afrikaner population is no higher than that found in other Caucasoid populations20 21 24 25 suggests that there has not been any significant IHC gene flow into this population since settling in South Africa. In this regard, it is of note that the iron overload which is so common in the local black population is the result of dietary contamination7 and its prevalence and severity in urban communities is declining rapidly with changing drinking patterns.54

References
29 Bezwoda WR, Bothwell TH, Torrance JD, et al. The rela-

Correspondence and requests for reprints to Professor T H Bothwell, Department of Medicine, University of the Witwatersrand Medical School, 7 York Road, Parktown 2193, Johannesburg, South Africa.
The HLA linked iron loading gene in an Afrikaner population.

doi: 10.1136/jmg.24.6.348

Updated information and services can be found at:
http://jmg.bmj.com/content/24/6/348

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/