Mutations linked to the pro α2(I) collagen gene are responsible for several cases of osteogenesis imperfecta type I

G WALLIS*, P BEIGHTON*, C BOYD†, AND C G MATHEW‡

From *the MRC Research Unit for Inherited Skeletal Disorders, Department of Human Genetics, Medical School, University of Cape Town, Observatory 7925, South Africa; †the Department of Surgery, UMDNJ–Rutgers Medical School, CN 19 New Brunswick, New Jersey 08903, USA; and ‡the MRC Molecular and Cellular Cardiology Research Unit, University of Stellenbosch Medical School, Tygerberg 7505, South Africa.

SUMMARY We have analysed six South African families with osteogenesis imperfecta type I using three DNA polymorphisms associated with the pro α2(I) collagen gene. In four of these families linkage of the pro α2(I) gene and the osteogenesis imperfecta phenotype was suggested, whereas in the remaining two families there was a lack of linkage. No distinct correlation could be made between the phenotypic features of the families studied and linkage or lack of linkage to the pro α2(I) gene. Two different haplotypes were found to be associated with the mutant pro α2(I) alleles. These findings suggest that molecular heterogeneity exists within osteogenesis imperfecta type I and that in a significant proportion of cases the defect is linked to the pro α2(I) gene.

Osteogenesis imperfecta (OI) is a heterogeneous disorder characterised by fragility of the bones and variable abnormalities of other collagen containing extraskeletal tissues. The autosomal dominant forms of OI have been divided into two broad types, OI type I and OI type IV, on the basis of their clinical manifestations. OI type I is the mildest form of the disorder and is characterised by normal stature, bone fragility without marked deformity, blue sclerae, early hearing loss in some patients, and the presence of dentinogenesis imperfecta in some families. OI type I is relatively common and constitutes the majority of all known cases of OI. There is considerable phenotypic variability within OI type I and it is very probable that there is further heterogeneity. The features of OI type IV are white or greyish sclerae, a moderate tendency to fracture, and variable bone deformity. This disorder has been reported in only a few families and its phenotypic differentiation from OI type I is far from absolute. Indeed, the phenotypic features of scleral colour and fracture severity are poor discriminants and their value in accurate subclassification is questionable. The problem is compounded by difficulties in subjective assessment and the probable influence of multiple epistatic factors.

Defects in the biosynthesis or structure of type I collagen have been found in several variants of OI. Biochemical studies have suggested that the OI type I phenotype is due to alterations in the synthesis of one of the pro α1(I) chains of type I collagen. This has been substantiated by Barsh et al who showed that the decreased production of type I procollagen by cells from three subjects with OI type I was the consequence of a non-functional allele for pro α1(I).

A recent report has implicated a mutation in a pro α2(I) chain in a patient with phenotypic features compatible with OI type IV. Linkage studies using an EcoRI restriction fragment length polymorphism (RFLP) in the pro α2(I) gene in families with mild forms of OI have also suggested that mutations in the pro α2(I) gene are involved in OI type IV but not in OI type I.

Recently, we have described linkage between an RsaI RFLP in the pro α2(I) collagen gene and the OI phenotype in a family with OI type I. We have now used three pro α2(I) collagen gene RFLPs in the analysis of this family and a further five families with OI type I. Our data suggest that defects in the pro α2(I) gene are responsible for this phenotype in four of the families and that further molecular heterogeneity exists within this category of OI.

Received for publication 27 February 1986.
Accepted for publication 18 March 1986.
Patients, materials, and methods

Patients
The patients from families who participated in this study had been examined and investigated by PB and were derived from a previously reported series of 153 affected South Africans. Following evaluation of their clinical and radiographical manifestations and their pedigrees, the patients were grouped according to the classification of OI proposed by Silence et al. The families in this study were categorised as having type I OI on the basis of these accepted criteria. All families had autosomal dominant inheritance, a mild to moderate tendency to fracture, blue sclerae, and normal stature. Wormian bones in skull radiographs were a consistent feature, while dentinogenesis imperfecta and deafness were variable components.

Materials
Restriction enzymes were obtained from Bethesda Research Laboratories, Boehringer Mannheim, and New England Biolabs, and were used as directed by the suppliers. Labelled dCTP was obtained from New England Nuclear. Nitrocellulose was obtained from Schleicher and Schuell.

Genomic DNA hybridisation analysis
High molecular weight DNA was prepared from 10 ml of EDTA anticoagulated blood. Samples of 10 μg DNA were digested with the appropriate restriction enzymes. Digested DNA was separated by electrophoresis in 0.5% (w/v) agarose gels. The DNA fragments were transferred to nitrocellulose filters and hybridised with the human pro α2(I) probes for 48 hours at 65°C as previously described. Stringency washes for the cDNA probes were in 0.5×SSC at 65°C and genomic probes in 0.1×SSC at 65°C. The probes were labelled to a specific activity of 2 to 5×10⁶ cpmpg by nick translation.

DNA probes for the human pro α2(I) gene
The human pro α2(I) gene has been cloned, characterised, and localised. Three RFLPs of high frequency have been detected in this gene with the restriction enzymes EcoRI, RsaI, and MspI. The positions of the genomic and cDNA probes used in the detection of these RFLPs are shown in fig. 1. Two contiguous EcoRI genomic clones were used to detect the EcoRI RFLP in the 5′ region of the gene. The cDNA Hf32 was used for the detection of the RsaI RFLP. A 4 kb EcoRI genomic clone was used to detect the MspI RFLP.

Linkage analysis
Subjects from 12 families with autosomal dominant OI type I were screened for the presence (+) or absence (−) of the EcoRI, MspI, and RsaI RFLPs

![Diagram](image-url)

Fig 1 Restriction map indicating polymorphic sites in the human pro α2(I) collagen gene. (a) EcoRI RFLP detected with genomic clones NJ-3′ and NJ-3*. (b) RsaI and MspI RFLPs in region of gene spanned by the cDNA, Hf32. E=EcoRI, R=RsaI, M=MspI, * = polymorphic site (only the relevant RsaI and MspI sites have been indicated).
Linkage of pro α2(I) collagen gene RFLPs and OI type I

Ten of the 12 families were informative at one or more sites. Four of these families were excluded owing to the lack of cooperative or accessible family members. The genotypes of the available subjects from the remaining six families were determined for the EcoRI, RsaI, and MspI RFLPs. Lod scores were calculated at various recombination fractions (θ) using the computer programme LIPED.²³

Results

HETEROZYGOTE FREQUENCIES FOR THE RFLPs IN THE PRO α2(I) GENE

In order for an RFLP to be useful in a linkage analysis of an autosomal dominant disorder, affected subjects should be heterozygous. We have therefore determined the frequencies of the EcoRI (this paper), MspI,¹⁰ and RsaI¹⁴ RFLPs in three South African population groups. The results are given in table 1 for the Europeans, the so-called 'Cape Coloureds'²⁴ (a population of mixed ancestry), and the South African Blacks. The EcoRI frequencies were calculated from the genotypes of 18 unrelated healthy subjects from each population group. It is significant that the minor allele in the European population (+) is the major allele in the Black population. This probably contributes to the high degree of heterozygosity for the EcoRI RFLP in the Cape Coloured population.

The combined use of the three RFLPs results in a predicted level of heterozygosity which exceeds 50% in all three population groups (table 1). This predicted level of heterozygosity assumes that no linkage disequilibrium exists between the marker loci. Although there is as yet no conclusive evidence of linkage disequilibrium, the close proximity of the polymorphic loci raises the possibility that the various alleles may associate preferentially with one another in the general population to form a frequently occurring haplotype.

<table>
<thead>
<tr>
<th>Locus</th>
<th>EcoRI</th>
<th>MspI</th>
<th>RsaI</th>
<th>% Heterozygosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>European</td>
<td>0.42 (+)</td>
<td>0.17 (-)</td>
<td>0.38 (-)</td>
<td>80.5</td>
</tr>
<tr>
<td>'Cape Coloured'</td>
<td>0.44 (+)</td>
<td>0.13 (-)</td>
<td>0.11 (-)</td>
<td>60.8</td>
</tr>
<tr>
<td>SA Black</td>
<td>0.37 (-)</td>
<td>0.05 (-)</td>
<td>0.00</td>
<td>51.7</td>
</tr>
</tbody>
</table>

*Previously reported in reference 16.
†Previously reported in reference 14.

Fig 2 Southern blots showing RFLPs associated with the pro α2(I) collagen gene. DNA samples digested with (a) EcoRI and hybridised to NJ–3' and NJ–3", (b) RsaI and hybridised to Hf32, and (c) MspI and hybridised to a 4 kb EcoRI genomic subclone. The presence and absence of the polymorphic sites are indicated by + and – respectively.
LINKAGE ANALYSIS

The pedigrees of the six dominant OI type I families where linkage analysis was feasible are given in fig 3. The polymorphic markers used in establishing linkage or non-linkage are indicated on the pedigrees. The lod scores obtained in families a to f are given in table 2.

In families a to d positive lod scores were obtained, providing presumptive evidence that OI in these families is caused by mutations within or close to the pro \(\alpha_2(I) \) gene. The lod score for family d is low as the family is small and is not the result of the

<table>
<thead>
<tr>
<th>Family</th>
<th>Lod scores</th>
<th>Haplotypes of the OI-pro (\alpha_2(I)) allele*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\theta)</td>
<td>EcoRI</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>3.91</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>2.7</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>1.5</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td>0.602</td>
</tr>
<tr>
<td>e</td>
<td>0.05</td>
<td>-1.442</td>
</tr>
<tr>
<td>f</td>
<td>0.05</td>
<td>-1.442</td>
</tr>
</tbody>
</table>

*, + and - indicate presence and absence of the cutting site respectively.

\(\theta = \) recombination fraction.

FIG 3 Pedigrees of families with OI type I. Informative restriction sites are designated by E=EcoRI, M=MspI, and R=RsaI. Subjects heterozygous (+/-) and homozygous for the presence (+/+ and absence (-/-) of the polymorphic sites are indicated. The shaded symbols indicate affected subjects. The probands are arrowed. Family a is as previously reported in reference 14.
Linkage of pro α2(I) collagen gene RFLPs and OI type I

detection of recombinants. In families e and f the negative lod scores indicate a lack of linkage between the pro α2(I) gene and the OI phenotype. In families a to c the same haplotype (−−+) for the EcoRI, Rsal, andMspI RFLPs respectively was co-inherited with the OI phenotype, whereas in family d the haplotype of the pro α2(I) allele is different (−++).

Clinical Phenotypes
The four families in whom linkage was demonstrated all had normal stature, a mild to moderate tendency to fracture, and definite but variable blueness of the sclerae. Dentinogenesis imperfecta was present in three of these kindreds, but none had deafness.

The two families in whom linkage was not demonstrated had a similar phenotype, but differed in that deafness had developed in early adulthood in some family members. The significance of this observation, if any, is uncertain, although it may be indicative of heterogeneity.

Within all the families studied there was considerable intrafamilial variation including frequency of fracturing, depth of scleral blueness, and presence and severity of dentinogenesis imperfecta.

Discussion

By establishing linkage and lack of linkage between the pro α2(I) gene and the OI type I phenotype, we have demonstrated that molecular heterogeneity exists within this form of OI and that in a significant proportion of cases the defect is in or near the pro α2(I) gene. No distinct correlation could be made between the phenotypic features of the families studied and linkage or lack of linkage to the pro α2(I) gene. Thus, the non-allelic mutations causing the OI type I phenotype possibly contribute to the observed heterogeneity, but do not subdivide this form of OI at the clinical level.

Mutations in pro α2(I) alleles producing the OI type I phenotype are likely to be structural, as a decreased rate of synthesis of pro α2(I) chains has been demonstrated in subjects without OI.25 To date, structural mutations in the pro α2(I) chains have been shown to produce mild variant forms of OI,26,27 as well as the OI type II,28 OI type III,25 and OI type IV phenotypes.11,29 Only mutations which reduce the expression of one of the pro α1(I) alleles resulting in a decreased production of normal collagen have been shown to produce the OI type I phenotype. Structural mutations in pro α2(I) could conceivably result in a similar decreased production of normal collagen if the type I collagen trimers incorporating the abnormal pro α2(I) chain were not secreted.29 Although mutations of this nature are possible, it is likely that many other structural mutations in pro α2(I) exist which contribute to the spectrum of phenotypic variation which encompasses both OI type I and OI type IV.

Two different haplotypes were recognised in the mutant pro α2(I) alleles in families where linkage of OI to the pro α2(I) gene was established. Preliminary results have shown that the mutations in family a and family d map to different regions of the pro α2(I) collagen chain (unpublished data). Families a to c have the same linked haplotype and it is possible that an association may exist between this haplotype and a specific mutation within the gene. A close association between DNA haplotypes and specific thalassaemia mutations has been described.30 This association, although not invariant, was used to develop a strategy for the characterisation of β thalassaemia mutations. With the detection of an increasing number of RFLPs in the pro α2(I) gene, such a strategy may well be applicable in the efficient characterisation of the mutations causing the OI type I phenotype. The lack of linkage to the pro α2(I) gene in families e and f suggests the involvement of the pro α1(I) gene.10,11 This has been confirmed in the case of family e where a decreased production of pro α1(I) has been observed (unpublished results).

Apart from interfamilial variation, considerable intrafamilial variation was evident in the families studied. The phenotypic variation observed in these families is important as it emphasises the range of phenotypes that can result from the same molecular defect. This intrafamilial variation must result from the expression of other genes that modify the phenotype. A precedent for the presence of modifying genes exists in the β thalassaemias and sickle cell anaemia. The severity of these disorders has been shown to be decreased where, for example, there is an increased expression of fetal haemoglobin.31 Possibly, the intrafamilial variation observed in OI could similarly result from an increased expression of other collagen types in some subjects. Thus, the clinical heterogeneity in OI type I can be the result of mutations in different alleles, different mutations in the same allele, and the variable expression of modifying genes.

We are grateful to Drs J Myers, F Ramirez, P Tsipouras, and D Prockop for the pro α2(I) cDNA, Hf32, and the pro α2(I) EcoRI genomic subclones NJ-3' and NJ-3", and to Drs R Dalgleish and R Kaufman for the 4 kb pro α2(I) genomic subclone. We would like to thank the genetic nursing sisters, G Christy and L Merckel, for obtaining the blood
samples, J Schram and L van Herwerden for technical assistance, and E Lavin and D Cannell for helping to prepare the manuscript. This work was supported by grants from the Medical Research Council of South Africa, the University of Cape Town Staff Research Fund, the Mauerberger Foundation, and the Harry Crossley Foundation.

G Wallis, P Beighton, C Boyd, and C G Mathew

Correspondence and requests for reprints to Dr G Wallis, MRC Research Unit for Inherited Skeletal Disorders, Department of Human Genetics, Medical School, University of Cape Town, Observatory 7925, South Africa.
Mutations linked to the pro alpha 2(I) collagen gene are responsible for several cases of osteogenesis imperfecta type I.

G Wallis, P Beighton, C Boyd and C G Mathew

doi: 10.1136/jmg.23.5.411

Updated information and services can be found at:
http://jmg.bmj.com/content/23/5/411

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/