Partial trisomy 6p and partial trisomy 22 resulting from 3:1 meiotic disjunction of maternal (6p;22q) translocation

P R SCARBROUGH*, A J CARROLL*, S C FINLEY†, AND K HAMERICK*
*Laboratory of Medical Genetics and †Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA.

SUMMARY A male infant, partially trisomic for a small segment of chromosomes 6 and 22 resulting from a maternal translocation, is described. Comparison of the phenotypic features of the proband with those noted in partial 6p and partial 22 trisomies revealed some common features found in both chromosome anomalies but especially reinforced those features thought to be characteristic of 6p trisomy syndrome.

Case report

A 13 day old white male (fig 1) was the 2780 g product of a 38 to 39 week gestation for a 22 year old gravida 2 (FO, PO, Abl, LO) mother. Admission to hospital and hormone injections were required to maintain the pregnancy complicated by first trimester bleeding. Maternal drug or alcohol abuse, radiation or chemical exposure, and smoking were denied. Family history was remarkable for several maternal relatives with multiple miscarriages and several unexplained early infant deaths.

Caesarean section was performed because of maternal toxaemia. Polyhydramnios was noted at delivery. The neonatal course was complicated by hyperbilirubinaemia and hypoglycaemia.

Physical examination showed a vigorous infant with microcephaly, facial asymmetry, overriding sagittal suture, small anterior fontanelle, right sided microphthalmia, blepharophimosis, blepharoptosis, downward slanting palpebral fissures, mild hypertelorism, slightly flattened nasal bridge, flammeus naevus over the nasal bridge and nape of the neck, bilateral preauricular pits, holosystolic murmur, partial soft tissue syndactyly of the second to fourth
toes, penile chordee, and cryptorchidism. Re-evaluation at 18 months revealed significant developmental delay.

CYTOGENETIC STUDIES

Cultured peripheral leucocytes from the proband contained 47 chromosomes with an extra atypical acrocentric chromosome approximately one-quarter to one-third the size of a G group chromosome (fig 2a). Clarification of its derivation was made possible by analysis of parental chromosomes. The father’s karyotype was normal. GTG banding of maternal chromosomes revealed a reciprocal translocation between the short arm of a chromosome 6 and the long arm of a chromosome 22: 46,XX,t(6;22)(p25;q11·2) (fig 2b and c). The proband’s karyotype, interpreted as 47,XY,+der(22),(22pter→22q11·2::6p25→6pter)mat, indicated trisomy for 6pter→6p25 and 22pter→22q11·2. Six of ten maternal relatives studied were balanced translocation carriers.

Discussion

Partial trisomy 6p is considered to be a clinically recognisable syndrome. Comparison of the clinical

FIG 2. (a) Partial karyotype of the proband. Normal chromosomes 6 and 22 and atypical supernumerary chromosome 22. (b) Partial karyotype of carrier: rcp t(6;22)(p25;q11·2). (c) Diagrammatic illustration of the translocation. Breakpoints are indicated by arrows.
findings (table) of previously reported cases1–8 and our case supports and amplifies the phenotype suggested by Breuning \textit{et al.}4 Frequently noted anomalies include term gestation; low birth weight; delayed psychomotor and somatic development; high, prominent forehead; thin, sparse hair; large anterior fontanelle; abnormal sutures (split or overlapping); flat occiput; bulbous nose; microstomia; thin lips; small pointed chin; skin haemangioma; low set, malformed ears; heart murmur or defect; proteinuria and small kidneys. Ocular abnormalities, including close set eyes, microphthalmia, blepharoptosis, blepharophimosis, strabismus, and nystagmus, appear to be prominent features of trisomy 6p.

The duplication of genetic material has been fairly constant in published cases with breakpoints between 6p21 and p23. However, the proband was trisomic for a smaller segment of 6p (6pter→p25) when compared to these cases (6pter→p21–p23), indicating that many of the phenotypic features of partial trisomy 6p can be demonstrated with trisomy of only an extremely small amount of 6p.

In cases resulting from malsegregation of a parental translocation, there is an overlap of phenotypes. However, comparison of the clinical findings in the resulting chromosomally abnormal offspring should allow further delineation and segregation of the clinical presentation associated with specific chromosome segments. Such correlation of phenotypes with monosomy or trisomy of particular chromosome regions would seem most important in understanding the full range of expression of the respective cytogenetic anomalies especially in counselling for prenatal diagnosis.

The expert technical assistance of John Woods and secretarial assistance of Shirley Gann are gratefully acknowledged. The cooperation and patience of the very special parents of this patient and their relatives who were studied is also appreciated. This study was supported in part by Project 905, MCH, DHHS.

Table 1. Phenotypic features of partial trisomy 6p.

<table>
<thead>
<tr>
<th>Reference</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV.33</td>
<td>pter→p21</td>
<td>pter→p23</td>
<td>pter→p21</td>
<td>pter→p21</td>
<td>pter→p22</td>
<td>pter→p21</td>
<td>pter→p22</td>
<td>pter→p25</td>
</tr>
<tr>
<td>IV.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Correspondence and requests for reprints to Dr P R Scarborough, Laboratory of Medical Genetics, University Station, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
Partial trisomy 6p and partial trisomy 22 resulting from 3:1 meiotic disjunction of maternal (6p;22q) translocation.

P R Scarbrough, A J Carroll, S C Finley and K Hamerick

doi: 10.1136/jmg.23.2.185

Updated information and services can be found at:
http://jmg.bmj.com/content/23/2/185

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/