Gene deletion in an Italian haemophilia B subject

F Bernardi*, L Del Senno*, R Barbieri*, D Buzzoni*, R Gambari*, G Marchetti*, F Conconi*, F Panicucci†, M Positano†, and S Pitruzzello†

From *Centro Studi Biochimici sul Morbo di Cooley, Università degli Studi di Ferrara, Via L Borsari 46, 44100 Ferrara; and †Centre for the Study and Treatment of Haemophilia and Haemorrhagic Disorders, University of Pisa, Pisa, Italy.

SUMMARY DNA from 20 Italian haemophilia B patients was analysed by the Southern blotting technique and hybridisation to a factor IX cDNA probe. A large deletion of factor IX gene was detected in one patient with antibodies to the infused factor; the EcoRI pattern of the other 19 subjects examined was normal.

Haemophilia B is an inherited X linked disease caused by a heterogeneous functional deficiency of factor IX, a glycoprotein involved in the intrinsic pathway of blood coagulation. The recent cloning of DNA fragments coding for human factor IX has allowed the identification of a genetic lesion in haemophilia B and the detection of an intragenic restriction enzyme polymorphism potentially useful in informative families for antenatal diagnosis.

We studied the DNA isolated from 20 Italian males carrying haemophilia B using a cDNA probe for factor IX. A large gene deletion was detected in one subject, while the DNA patterns of the other haemophilia B patients were indistinguishable from normal.

Subjects and methods

Blood samples from 20 Italian haemophilia B patients were obtained by standard procedures. DNA preparation and Southern blotting technique were as previously described. DNA was digested with the appropriate restriction enzymes under the conditions indicated by the supplier (Boehringer, Mannheim).

Thyroglobulin genomic probe was a generous gift from Dr E Avvedimento.

Hybridisation was performed in accordance with the Gene Screen transfer membrane method (New England Nuclear, Boston). Excess probe was washed off by incubation with 0.06 mol/l Tris-HCl (pH 8), 0.3 mol/l NaCl, 0.002 mol/l EDTA, and 1% SDS at 60°C for one hour, followed by incubation in 0.03 mol/l NaCl, 0.006 mol/l Tris (pH 8), and 0.0002 mol/l EDTA for one hour at room temperature.

Autoradiographs were developed after three to six days of exposure.

Results

The DNA from the 20 haemophilia B subjects under study were digested with EcoRI restriction enzyme and after Southern blotting hybridised to a factor IX cDNA probe (for which we thank Dr G G Brownlee). Fig 1 shows the autoradiographic frag-

![Image](https://example.com/image.jpg)

FIG 1 Southern blots obtained from the DNA of three haemophilia B patients and one normal control. DNA was digested with EcoRI restriction enzyme and hybridised to factor IX cDNA probe. 1, 2, 3: haemophilia B patients; N: normal control.
ments obtained in three haemophilia B subjects and one normal subject. The patterns of cases 2 and 3 are indistinguishable from normal.

Similar results were obtained in the other 17 haemophilia B subjects investigated. However, case 1 did not show any hybridisation with the radioactive probe used.

The DNA of case 1 was analysed further using XbaI, TaqI, HindIII, and BamHI restriction enzymes and the same cDNA probe. The results obtained (fig 2a) confirm that the DNA of this patient fails to hybridise with factor IX probe.

In order to assess the presence of hybridisable DNA in the Southern blots of case 1, the EcoRI digest was additionally tested with a thyroglobulin gene probe (fig 2b). Like the normal control, patient 1 showed the thyroglobulin specific 2 kb band. The DNA of case 1 also gave normal results when hybridised with a γ globin gene probe (data not presented).

Discussion

The DNA of an Italian subject carrying haemophilia B, digested with several restriction enzymes, did not show hybridisation fragments when tested with a factor IX cDNA probe. As the cDNA used hybridises to all factor IX exons, the findings obtained indicate that the DNA coding regions were deleted and, since the gene for factor IX is 34 kb in length, this is the smallest extent of the deletion, provided that more complex rearrangements are not present.

Large and heterogeneous structural changes in the factor IX gene have already been described by Giannelli et al9 and Peake et al10 in the United Kingdom. Neither in the British patients so far described nor in this Italian patient are the end points of the DNA lesion known. DNA sequences 3' and 5' to the factor IX gene will be needed to determine the precise extent of the lesion, which, as in thalassaemia,13 could be very extensive and generated through a similar molecular mechanism.13 14

Taken together, previous published reports and the present data indicate that the majority of the gene defects causing haemophilia B are due to small deletions or point mutations, impairing gene expression or the structure-function relationship of the molecule, as in haemophilia B Chapel Hill.15

As in the British patients, our patient has antibodies to the factor IX concentrate administered for therapeutic purposes. The other 19 haemophilia B patients considered, whose hybridisation pattern with factor IX cDNA probe was normal, do not produce antibodies to the infused factor IX. These data support the hypothesis of Giannelli et al9 that patients with a gross gene defect, leading to the absence of immunologically recognisable factor IX, develop antibodies to the factor, which make its infusion inefficient.

We thank Dr G G Brownlee for the factor IX cDNA probe, Dr E Avvedimento for the thyroglobulin genomic probe, and E Mariotti and V Margutti for preparing the manuscript. This work was supported by the Progetto Finalizzato Ingegneria Genetica e Basi Molecolari delle Malattie Ereditarie of the CNR, contratto No 82.02360.51 and Ministero della Pubblica Istruzione.

References

Gene deletion in an Italian haemophilia B subject

Correspondence and requests for reprints to Professor F Bernardi, Centro di Studi Biochimici sul Morbo di Cooley, Via L Borsari 46, 44100 Ferrara, Italy.
Gene deletion in an Italian haemophilia B subject.

F Bernardi, L del Senno, R Barbieri, D Buzzoni, R Gambari, G Marchetti, F Conconi, F Panicucci, M Positano and S Pitruzzello

doi: 10.1136/jmg.22.4.305

Updated information and services can be found at:
http://jmg.bmj.com/content/22/4/305

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/