Case reports

Correspondence and requests for reprints to Dr I D Young, Department of Child Health, Clinical Sciences Building, Leicester Royal Infirmary, PO Box 65, Leicester LE2 7LX.

Phenotypic delineation of ring chromosome 15 and Russell-Silver syndromes

GOLDEN N WILSON, SUE ELLYN SAUDER, MARK BUSH, AND INESE Z BEITINS

Department of Pediatrics and Communicable Diseases, C S Mott Children’s Hospital, The University of Michigan, Ann Arbor, Michigan 48109, USA.

SUMMARY A male child with features of the Russell-Silver syndrome, including pre- and postnatal growth delay, triangular facies, bilateral fifth finger clinodactyly, and disproportionate lower extremities, was found to have a ring chromosome 15 in all peripheral leukocytes examined. Review of the reported cases of ring chromosome 15 defines a malformation syndrome with a characteristic facies related to deletion of the 15q26-2→qter region. Russell-Silver and ring 15 syndromes share clinical features such as growth deficiency, triangular facies, digital anomalies, and café-au-lait spots. Microcephaly, mental retardation, facial dysmorphology, limb anomalies, and cardiac defects are more striking in ring chromosome 15 patients and are indications for karyotyping when found in conjunction with the Russell-Silver phenotype.

Since the original reports of Silver et al1 and Russell,2 a characteristic syndrome of intrauterine growth retardation, postnatal growth delay, and dysmorphic features has been delineated in over 150 reported cases.3-5 Minor anomalies associated with Russell-Silver dwarfism include a triangular facies, downturned corners of the mouth, fifth finger clinodactyly, skeletal asymmetry, and café-au-lait spots. We report here a patient with ring chromosome 15 who was initially diagnosed as having Russell-Silver syndrome. Review of 22 cases of ring chromosome 15 defines a clinical syndrome which is similar but distinct from that of Russell-Silver dwarfism.

Case report

The proband was the term product of an uncomplicated gestation to a 20 year old primigravida with a 6-8 kg weight gain. The father was 22 and the family history was unremarkable. Birth weight was 2-51 kg (3rd centile), and length 44 cm (<3rd centile). Tachypnoea developed at the age of six hours owing to a small patent ductus arteriosus and treatment with digoxin was started. Following an otherwise uneventful neonatal course, there was no further sign of cardiac disease and digoxin was discontinued. Right equinovarus and left metatarsus adductus anomalies were also noted at birth and treated with serial casting. Proportionate short stature with decreased growth velocity was noted during the first two years and evaluated at 3½ and 4 years 7 months. Physical examination at 4 years 7 months revealed a height of 84 cm (50th centile for 18 months), a weight of 8-9 kg (50th centile for 8

Received for publication 10 July 1984.
Accepted for publication 2 August 1984.
months), and a head circumference of 47 cm (50th centile for 12 months). The facies (fig 1) were triangular with mild hypertelorism (interpupillary distance 4.8 cm; 50th centile for 2½ years). The ears were large with a hypoplastic antihelix. The mouth was small with downturned corners and normal dentition. There was no cardiac murmur. There was bilateral clinodactyly of the fifth fingers with single digital crease and bilateral single palmar creases. Dermatoglyphs were unremarkable except for tented arch patterns on the right second and left second and fifth digits. The right leg was thinner and shorter than the left (36 versus 37 cm). The second toe was anteriorly placed bilaterally. Developmentally, the patient had normal motor milestones but a delay in speech.

Laboratory studies showed normal thyroxine, growth hormone, and somatomedin C concentrations at 3½ years; the bone age was 2 years. At 4 years 7 months the bone age was 2 years 8 months and growth velocity was 4 cm per year. Provocative testing with L-dopa and insulin induced hypoglycaemia showed normal growth hormone and cortisol responses. A peripheral leucocyte karyotype using standard Giemsa-trypsin banding methods showed a 46,XY,r(15) karyotype in all 25 cells examined (fig 2). No evidence of further rearrangements or

FIG 1 Frontal and lateral views of the proband.

FIG 2 Giemsa-trypsin banded karyotype from the proband showing 46,XY,r(15).
Case reports

instability of the ring chromosome could be found. Breakpoints at band p11 of the short arm and q26-2 of the long arm were interpreted as the sites of ring formation. Staining for nucleolus organizer regions was positive for the normal chromosomes 15 in the parents and child but negative for the ring chromosome 15.

Results and discussion

We describe a patient with pre- and postnatal growth delay, triangular facies, hypertelorism, clinodactyly, limb asymmetry, and mild developmental retardation due to deletion of chromosome 15 as a result of ring formation. Standard Giemsa-trypsin and nucleolus organizer staining indicated the deletion could only involve the 15 short arm and long arm termini. Since the short arm terminus is thought to consist of satellite DNA sequences, we would presume that the deletion region responsible for this phenotype is the chromosome 15 long arm terminus distal to band 32. Rearrangements often associated with ring chromosomes were not detected in our patient.

Although some patients with ring chromosome 15 have minimal dysmorphism, the summary in the table defines a clinical ring 15 syndrome with growth deficiency and a characteristic malformation pattern. Certain ring 15 cases, such as the proband and the patients of Rumenic et al., Ferrante et al., and Yunis et al. have a distinctive triangular facies with frontal bossing, hypertelorism, and downturned corners of the mouth. Predominance of females, advanced parental age, microcephaly with mental retardation, café-au-lait spots, and limb anomalies are additional features of ring 15 syndrome. Phenotypic variability undoubtedly reflects in part the different extents of chromosome deletion, ring instability, or mosaicism which have been reported.

The table also presents the clinical features of Russell–Silver syndrome, listed as a mean percentage of cases taken from three separate surveys. Since the triangular facies and certain other characteristics may not be recognised during infancy, the average age of Russell–Silver patients at the time of publication (6-2 years) was compared to ring chromosome 15 patients (9-6 years). Both syndromes have a striking incidence of pre- and postnatal growth deficiency, advanced parental ages, triangular facies with frontal bossing, downturned corners of the mouth, digital anomalies such as clinodactyly, cryptorchidism/hypospadias in the male, and café-au-lait spots. Ring chromosome 15

<table>
<thead>
<tr>
<th>TABLE Comparison of ring chromosome 15 and Russell–Silver syndromes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring chromosome 15</td>
</tr>
<tr>
<td>No of cases</td>
</tr>
<tr>
<td>Average age (y)</td>
</tr>
<tr>
<td>Maternal age (y)</td>
</tr>
<tr>
<td>Paternal age (y)</td>
</tr>
<tr>
<td>Female sex</td>
</tr>
<tr>
<td>Low birth weight†</td>
</tr>
<tr>
<td>Short stature‡</td>
</tr>
<tr>
<td>Microcephaly§</td>
</tr>
<tr>
<td>Triangular faces</td>
</tr>
<tr>
<td>Frontal bossing</td>
</tr>
<tr>
<td>Hypertelorism</td>
</tr>
<tr>
<td>Cleft/high palate</td>
</tr>
<tr>
<td>Downturned corners of mouth</td>
</tr>
<tr>
<td>Anomalous ears</td>
</tr>
<tr>
<td>Digital anomaly</td>
</tr>
<tr>
<td>Limb anomaly</td>
</tr>
<tr>
<td>Skeletal asymmetry</td>
</tr>
<tr>
<td>Cryptorchidism/ hymospadias</td>
</tr>
<tr>
<td>Renal anomalies</td>
</tr>
<tr>
<td>Cardiac anomalies</td>
</tr>
<tr>
<td>Café-au-lait spots</td>
</tr>
<tr>
<td>Mental retardation</td>
</tr>
</tbody>
</table>

Ring 15 patients are from the summary of Moreau and Teysier with the addition of the proband and the case of Fryns et al., Denominator reflects those cases in which the feature was specifically mentioned or, in the judgement of the authors, was demonstrated or excluded. † Defined as below the 3rd centile. ‡ Clinodactyly, short, or fusiform digits. § Congenital hip dislocation, equinovarus, calcaneovalgus.
patients are predominantly female with a higher incidence of microcephaly, mental retardation, facial anomalies, limb deformities, and cardiac defects. Russell–Silver patients are predominantly male with an increased incidence of skeletal asymmetry. Endocrinological abnormalities such as growth hormone deficiency and hypopituitarism appear more typical of Russell–Silver syndrome.

Other chromosome abnormalities such as diploid/triploid mixoploidy, trisomy 18 mosaicism, and deletion 18p21 have been reported in patients with the Russell–Silver phenotype. It seems likely that this phenotype is caused by multiple agents which have in common a certain pattern of intrauterine growth retardation. The frequency of asymmetry implies differential effects before laterality is established, as occurs in mosaicism for triploidy or trisomy 9. This report emphasizes the need for karyotyping Russell–Silver patients with mental retardation, cardiac defects, or unusual dysmorphology.

References

Case reports

Correspondence and requests for reprints to Dr G Wilson, Section of Pediatric Genetics, C S Mott Children’s Hospital, K2015 Holden, Box 007, Ann Arbor, Michigan 48109, USA.
Phenotypic delineation of ring chromosome 15 and Russell-Silver syndromes.
G N Wilson, S E Sauder, M Bush and I Z Beitins

doi: 10.1136/jmg.22.3.233

Updated information and services can be found at:
http://jmg.bmj.com/content/22/3/233

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/