Partial trisomy 16 as a result of familial 16;20 translocation

E V DAIVISON* AND J R BEEasley†

*Department of Human Genetics, 19 Claremont Place, Newcastle upon Tyne NE2 4AA; and †Department of Paediatrics, Newcastle General Hospital, Westgate Road, Newcastle upon Tyne NE4 6BE.

SUMMARY Although trisomy 16 is well recognised in spontaneous abortuses, it is infrequent in livebirths and there is little information about the clinical effects. We report two sibs with partial trisomy 16q resulting in infant death. Both children were severely growth retarded with small elfin faces, prominent foreheads, low set ears, abnormal external genitalia, and intractable diarrhoea.

Case reports

The first child of healthy unrelated young parents was born after an uncomplicated pregnancy by normal delivery at term. The child weighed 2125 g at birth and her head circumference was 31.5 cm. She had distinctive facies, with a prominent forehead, small chin, and low set ears. She had bilateral fusion of the middle and fourth toes and very prominent labia majora. On the third day she developed watery diarrhoea which necessitated intravenous fluid therapy. Her condition improved briefly although
the undiagnosed diarrhoea persisted until the fifth
week of life when she suddenly deteriorated and
died. Necropsy showed a small VSD but no other
macroscopic congenital anomalies and no histology
was done.

The second pregnancy resulted in a premature
small for dates but healthy female. The third
pregnancy resulted in a 10 week miscarriage about
which there is no information. A fourth uncom-
plcated pregnancy resulted in a normal delivery
at 36 weeks' gestation of a male infant. He weighed
1875 g at birth, length 46 cm, and head circum-
ference 31.7 cm. Gestational assessment confirmed
his maturltv. External congenital anomalies included
a small elfin face with a prominent forehead and low
set ears, giving him an almost identical appearance
to the child who had died 8 years earlier (fig 1). He
had severe hypospadias with a bifid scrotum,
dystrophic nails on all digits, and rockerbottom
feet. A soft systolic murmur compatible with a VSD
was audible after the third day of life. At 48 hours
he became pale and hypotonic and developed
frequent watery motions but no vomiting. He was
never hypoglycaemic and there was no evidence of
infection. Faecal fluid contained 2% reducing
substances which persisted despite giving only
dextrose feeds. Serum electrolytes were normal
although initially the urea was raised (11.3 mmol/l)
and he had a moderate metabolic acidosis. He was
parenterally fed but the diarrhoea persisted despite
subsequent trials of various infant formulae and
loperamide. Serum electrolytes remained normal with
the exception of moderate hypokalaemia which was
easily corrected. No bacteria or viruses were
isolated from stool specimens. A barium follow
through showed a normal bowel and a chest x-ray
showed a normal heart with slight prominence of the
lung vessels. The skull x-ray showed defective
ossification of the parietal and frontal bones.
Analyses of blood and urine showed no evidence of
a metabolic disorder. Diarrhoea persisted until he
died at 18 days. Permission for necropsy was refused.

CYTOGENETIC FINDINGS

The karyotypes of both abnormal infants were
46,XX or XY, −20, + der(20), t(16;20)(q13;p13)pat.
The breakpoint of the long arm of chromosome 16
appeared to be at band q13 just below the hetero-
chromatic region and on chromosome 20 at band
p13 (fig 2).

FAMILY STUDIES

Cytogenetic analysis performed in 1976 after the
birth of the first infant identified the translocation.
The parents at that time were both 16 years of age,
the implications of this translocation were not
clearly understood, family studies were not attempt-
ed, and subsequent pregnancies were not monitored
by amniocentesis. After the birth of the second child
with the unbalanced translocation, both parents had
matured considerably and further family studies were

FIG 1 Physical appearance of second abnormal child.

![Physical appearance of second abnormal child](image1)

FIG 2 Partial karyotypes of (a) the probands, and
(b) the father. (c) Diagrammatic representation of
breakpoints.

![Partial karyotypes of (a) the probands, and
(b) the father. (c) Diagrammatic representation of
breakpoints](image2)
initiated. The translocation was found in other members of the family, although in no other part of the family was there any history of obstetric failure or abnormal livebirths. All the relevant members of the family have now received genetic counselling. The original family have recently completed a further pregnancy which was monitored by amniocentesis, and the infant is a carrier of the balanced form of the translocation.

Discussion

Yunis et al\(^2\) reported the first case of a liveborn infant with a partial trisomy 16q\(^{-}\). This trisomy is almost identical to ours although the case report of Yunis et al\(^2\) does not state at what age the infant died. Since then, data have been accumulating on the effect of partial monosomy and partial trisomy of chromosome 16.

Most of the chromosomal anomalies are the result of a balanced translocation of parental derivation, which also involves either monosomy or trisomy of other chromosomes in the karyotype. Although early reports of full trisomy 16 do exist\(^4-6\) they predated banding techniques and cannot be included in an attempt to define a syndrome. Full trisomy 16 is well reported in spontaneous abortion and generally results in disorganised embryos with very little evidence of development. Limited postnatal survival is possible with both partial trisomy 16p and 16q.\(^8\)\(^7\)

Roberts and Duckett\(^3\) reviewed published reports and included three cases of partial trisomy 16p, three cases of partial trisomy 16q, and one case with partial trisomy 16p and 16q. The most common features described in both of these trisomies were digital deformities, low birth weight, small malformed facies, which included low set abnormal ears, small palpebral fissures, and hypoplastic mandible. These anomalies are also consistent with anomalies found in many other chromosomal aberrations. Ridler and McKeown\(^7\) reported trisomy 16q arising from a maternal 15p;16q translocation. The breakpoint on the 16 was at q11 and the involvement of chromosomal material was similar to that in the two cases reported here. The anomalies found included a small and emaciated infant with a small elongated head, a narrow face, and a very low hair line; the child was described as having leprechaun-like facies. The skin was wrinkled, the limbs were abnormally flexed, and the hands showed a transverse palmar crease on the right and clinodactyly of both fifth digits. The infant died after 12 days.

The two cases presented here suggest an association between the intractable diarrhoea, which was the apparent cause of death in both, and partial trisomy 16. There is no report of this in any of the other cases.

Although there are perhaps still insufficient data to attempt to define a syndrome for partial or full trisomy 16, the most notable characteristics are intrauterine growth retardation, particular abnormalities of the face with downward slanting palpebral fissures, abnormal nose and ears, micrognathia, flexion deformities of the limbs and digits, and heart defects. Although many of these anomalies are found in association with other chromosome aberrations it is the particular facial appearance which suggests the trisomy for this chromosome.

The authors would like to thank Dr W D Elliott and Mr J Wagget for permission to report their patient, and Dr A R Boon for her involvement in the genetic counselling.

References

Correspondence and requests for reprints to Dr E V Davison, Department of Human Genetics, University of Newcastle upon Tyne, 19 Claremont Place, Newcastle upon Tyne NE2 4AA.
Partial trisomy 16 as a result of familial 16;20 translocation.

E V Davison and J R Beesley

doi: 10.1136/jmg.21.5.384

Updated information and services can be found at:
http://jmg.bmj.com/content/21/5/384

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/