An analysis of the parental age effect for inv dup (15)

J M CONNOR AND D H GILMORE

From the Duncan Guthrie Institute of Medical Genetics, Yorkhill, Glasgow G3 8SJ.

SUMMARY Parental ages and birth order were analysed in 16 sporadic cases of inv dup (15) using the method of Smith. A significant maternal age effect was apparent (dm=5·989, SE 1·86; dr=2·02, SE 2·496; db=—0·138, SE 0·46).

Inv dup (15) is a clinically important cause of mental retardation with few or no dysmorphic features. The parental origin of the extra chromosomal material is not known but several authors have commented on the increased parental ages. We decided to analyse this parental age effect since a major contribution from one parent would be an important clue to the likely origin of the extra chromosome.

Methods and results

A survey of published reports on inv dup (15) revealed 16 cases which included maternal age, paternal age, birth order, and normal parental karyotypes. These data are presented in table 1, which also includes the year of birth and country of origin of each patient and a numerical reference.

The choice of control data presents a problem in view of the diverse countries of origin of these patients. Data from England and Wales were chosen as complete figures for average paternal age, maternal age, and birth order, and correlations of these three variables are available (table 2). The year 1973 was chosen as this was the median year of birth of the patients.

Mean maternal age, paternal age, and birth order were all raised in comparison with these control data. Analysis by the method of Smith revealed a direct maternal age effect (dm) of 5·989 (2 SE 3·72), a direct paternal age effect (dr) of 2·02 (2 SE 4·992), and a direct birth order effect (db) of —0·138 (2 SE 0·4222). The direct maternal age effect exceeds twice its standard error and thus is highly statistically significant. Neither the direct paternal age effect nor the direct birth order effect exceed twice their standard errors.

Discussion

Older mothers tend to be married to older fathers and tend to have more children than younger mothers. Thus an analysis of raised parental ages needs to determine the relative contribution of these three components: paternal age, maternal age, and birth order. Analysis by the method of Smith uses multiple linear regression to provide values for the direct effect of each of these variables. It also
provides a standard error for each and if any of the
direct estimates exceeds twice their standard
error then they are statistically significant. In the
present study a significant direct effect was apparent
only for maternal age.

In all such studies the choice of appropriate
control data is important as parental ages and birth
order are liable to change with time in various
ethnic groups. Generally data are used for the mean
or median year of birth of the patients. This was
possible in the present study, but the choice of
ethnic group was more difficult since the patients
had diverse countries of origin. Control data from
England and Wales were chosen as these were both
complete and readily available. With this limitation,
the presence of such a strong direct maternal age
effect suggests, as in trisomy 21, that the mother is
the usual source of the extra chromosome in inv
dup (15). This proposition could be studied further
by the use of restriction fragment length polymorphisms in the involved region of chromosome 15.

We wish to thank Action Research for the Crippled Child for their continued support.

References

1 Smith CAB. Note on the estimation of parental age
2 Gilmore DH, Boyd E, McClure JP, Batstone P, Connor
JM. Inv dup (15) with mental retardation but few
3 Wisniewski L, Hassold T, Heffelfinger J, HigginJV.
Cytogenetic and clinical studies in five cases of inv dup
4 Howard PN, Stoddard GR, Yarbrough KM. Partial
trisomy D and Giemsa banding. Am J Hum Genet
1974;26:41A.
5 Furbetta M, Rosi G, Biagioni M, Cossu P, Cao A. A
case of extra small acrocentric bisatellited chromosome
6 Mankinen CB, Holt JG, Sears JW. Partial trisomy 15 in
7 Fujita H, Sakamoto Y, Hamamoto Y. An extra idic
(15p) (q11) chromosome in Prader-Willi syndrome. Hum
trisomy D: a diagnostic and cytogenetic dilemma. J Med
9 Zannoti M, Preto A, Giovanardi PR, Dallapicolla B.
Extra dicentric pter leads to q21/22 chromosomes in
five unrelated patients with a distinctive syndrome of
progressive psychomotor retardation, seizures, hyper
reactivity and dermatoglyphic abnormalities. J Ment
10 Registrar General. Statistical review of England and
11 Emery AEH. Methodology in medical genetics. An
introduction to statistical methods. Edinburgh, London,
12 Blank CE. Apert’s syndrome (a type of acrocephalo-
syndactyly): observations on a British series of thirty-

Correspondence and requests for reprints to Dr J M Connor, Department of Medical Genetics,
Duncan Guthrie Institute of Medical Genetics,
Yorkhill, Glasgow G3 8SJ.
An analysis of the parental age effect for inv dup (15).

J M Connor and D H Gilmore

doi: 10.1136/jmg.21.3.213

Updated information and services can be found at:
http://jmg.bmj.com/content/21/3/213

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/