Correspondence

More children affected than sibs. We have studied a female carrier of a translocation in which the long arms of chromosomes 13 and 21 were involved. Identification with G-banding (GTG) was not conclusive enough to enable us to establish definite breakpoints but, together with R-banding (RBA), would suggest the karyotype 46,XX,t(13;21)(q21;q21).

The offspring of this woman suggest that this translocation carries a high risk. The first child died just after delivery in another hospital without cytogenetic study. The second child had dysmorphic features with partial trisomy 13 and partial monosomy 21 owing to an adjacent 2 meiotic disjunction. His karyotype was 46,XY,−21,+der(13)t(13;21)(q21;q21). The third child had the phenotype of Down’s syndrome because of a 3:1 segregation and his karyotype was 47,XY,+21,t(13;21)(q21;q21).

F PRIETO AND L BADIA
Sección de Genética,
Servicio de Hematología y Hemoterapia,
Hospital Infantil,
Ciudad Sanitaria de la Seguridad Social ‘La Fe’,
Valencia, Spain.

Reference

1 Prieto F, Badia L, Asensi F, Roques V. Two reciprocal translocations t(9p+;13q−) and t(13q−;21q+). A study of the families. Hum Genet 1980;54:7-11.

Pyloric stenosis: children vs sibs

SIR.

We have reported findings in the relatives of patients with pyloric stenosis which showed, for female patients, more children affected than sibs. This is unexpected on a simple multifactorial threshold model and has led us and others to speculate whether there may be some direct maternal effect, though there is no indication, on the small series available, that maternal half-sibs are more often affected than paternal half-sibs. We have continued to follow the children of the female patients born between 1933 and 1949 (but not those born between 1921 and 1932, who are not likely to have further children) and the relatively high risk to children has now disappeared. The data on

Adjacent 2 translocation involving 13q and 21q

SIR.

The article in Journal of Medical Genetics entitled ‘Adjacent 2 translocation involving 13q and 21q’ (1982;19:314–5) states that this case is the first involving chromosomes 13 and 21 with an adjacent 2 disjunction in the infant and a balanced reciprocal translocation involving the long arms of chromosomes 13 and 21 in the mother.

We have studied a female carrier of a translocation in which the long arms of chromosomes 13 and 21 were involved. Identification with G-banding (GTG) was not conclusive enough to enable us to establish definite breakpoints but, together with R-banding (RBA), would suggest the karyotype 46,XX,t(13;21)(q21;q21).

The offspring of this woman suggest that this translocation carries a high risk. The first child died just after delivery in another hospital without cytogenetic study. The second child had dysmorphic features with partial trisomy 13 and partial monosomy 21 owing to an adjacent 2 meiotic disjunction. His karyotype was 46,XY,−21,+der(13)t(13;21)(q21;q21). The third child had the phenotype of Down’s syndrome because of a 3:1 segregation and his karyotype was 47,XY,+21,t(13;21)(q21;q21).

F PRIETO AND L BADIA
Sección de Genética,
Servicio de Hematología y Hemoterapia,
Hospital Infantil,
Ciudad Sanitaria de la Seguridad Social ‘La Fe’,
Valencia, Spain.

Reference

1 Prieto F, Badia L, Asensi F, Roques V. Two reciprocal translocations t(9p+;13q−) and t(13q−;21q+). A study of the families. Hum Genet 1980;54:7-11.
Adjacent 2 translocation involving 13q and 21q.

F Prieto and L Badia

*J Med Genet* 1983 20: 155
doi: 10.1136/jmg.20.2.155