Immunological tolerance induced by in utero injection

R D BARNES,* B E POTTINGER,* J MARSTON,† PAUL FLECKNELL,*
R H T WARD,‡ S KALTER,§ AND R L HEBERLING§

From *the Clinical Research Centre, Harrow; †the Department of Anatomy, University of Birmingham;
‡the Department of Obstetrics, University College Hospital, London; and §the South West Foundation for
Research and Education, Texas, USA.

SUMMARY Intrauterine injection of human whole blood into rabbit and rhesus monkey fetuses was
found to result in long lasting unresponsiveness to human serum albumin. Intrauterine injection of
viable allogeneic bone marrow cells into rabbit fetuses was without any apparent harmful effect and
also resulted in permanent unresponsiveness demonstrated by donor red cell survival studies. The
implication of these findings in respect of using this approach towards the correction of certain
inherited diseases in man is discussed.

Induction of immunological tolerance is classically
conferred by the very early injection of antigens.1 2
Especially significant in terms of the concept of
tolerance were the experiments performed upon mice
in the immediate neonatal period.3 4 Exposure to
antigens earlier in life also leads to tolerance. For
example, newborn animals are tolerant to trans-
placently transmitted maternal immunoglobulin.5
However, there have been few recorded studies of
induction of tolerance by intrauterine injection of
the fetus, a study which we have performed here.

Our initial interest concerning tolerance centred
upon early embryo aggregation derived mouse
chimaeras.6 7 Derivation of such chimaeras is
difficult and this led us to consider ‘constructing’
chimaeras by intrauterine injection. Motivation for
this approach was the possibility of using this
procedure to correct certain haemopoietic stem cell
defects, for example, thalassaemia major. In this
study we have attempted to ascertain whether
unresponsiveness to intrauterine injected xenogeneic
whole blood and allogeneic bone marrow can be
achieved and whether unresponsiveness is permanent.

Materials and methods

ANIMALS AND PRIMARY
EXPERIMENTAL PROCEDURE
Tolerance to xenogeneic whole blood
Tolerance was investigated in a litter of NZW
rabbits and one rhesus monkey (Macaca mulatta)
which was available. Although the surgical
techniques employed for the two species varied, the
approach was essentially the same. Briefly, this
involved the injection of xenogeneic whole blood
(human) into the peritoneal cavity of mid-late term
rabbit and rhesus monkey fetuses and later
challenging after birth.

Surgery in the rhesus monkey was performed as
described by Cotes and her colleagues8 and involved
hysterotomy, removal of amniotic fluid, and injection
of whole human blood (2 to 4 ml ip) through a
23 gauge needle into the fetus under direct vision.
The incision was later repaired in layers. Before
closure, amniotic fluid with 10 ml of warm saline was
introduced back into the amniotic cavity.

Laparotomy in the rabbit was followed by
injection of human blood directly through the
uterine wall into the peritoneal cavity of each fetus,
using a 23 gauge needle, and the abdominal wall was
repaired in layers as in the monkey. Thirteen fetuses
were injected with 0·5 ml group A Rh+ve human
blood on the 28th day of a 31 day gestation. One
monkey fetus was injected at 90 days with 2 to 4 ml
of A Rh+ve human whole blood.

Tolerance to allogeneic bone marrow
A second mid-term NZW rabbit was used here and
viable allogeneic bone marrow cells from one adult
NZW donor were injected into each of the seven
fetuses as above. Each fetus was injected on the 26th
day of a 31 day gestation with 6·4 × 10⁶ viable femoral
bone marrow cells suspended in 0·5 ml RPMI 1640 +
pen/strep (100 units/ml).

INVESTIGATION
Rabbits and rhesus monkey injected with whole
human blood
Of the 13 rabbit fetuses injected, 12 survived. The
rhesus monkey was also injected and survived. All the animals appeared normal at birth and were reared by their mothers. Six of the injected rabbits together with six age matched untreated controls were first challenged at 12 weeks of age with \(\approx 20 \times 10^{10} \), \(^{51}\)Cr-labelled red cells (25 \(\mu \)Ci/mg). This challenge was also carried out in the treated and control rhesus monkeys. Following the elimination of the \(^{51}\)Cr radioactivity, all groups of animals were challenged with 1.0 mg \(^{125}\)I-HSA (25 \(\mu \)Ci/mg) and this was repeated on four separate occasions when the radioactivity had been eliminated.

Rabbits injected with allogeneic bone marrow

Four rabbits survived injection of allogeneic bone marrow for testing, three having been cannibalised by the mother at birth. The survivors appeared normal and were successfully reared. Again these survivors were challenged at 12 weeks of age, together with three age matched untreated controls on three occasions with \(\approx 20 \times 10^{10} \), \(^{51}\)Cr-labelled red cells (25 \(\mu \)Ci/mg).

In each case following the first challenge each animal was rechallenged once radioactivity could no longer be detected in any of the animals.

Results

XENOGENEIC HUMAN BLOOD INJECTED ANIMALS

In both the rabbits and the rhesus monkeys there was a rapid and total loss (4 days) of \(^{51}\)Cr-radiolabelled red cells and there was no difference between the in utero injected animals and the untreated matched controls. This loss, one has to presume, resulted from interspecies human red cell lytic activity in both the rabbits and monkeys.

In respect of the results with labelled HSA both the rabbits and monkey presented very similar findings.

The results on the rabbits are detailed in table 1 and shown in diagram in fig 1.

In contrast to the controls (fig 1) there was a generally delayed elimination of HSA in the in utero injected rabbits. Although there was some individual variation, this was to be expected. One possible explanation is that in utero injection of each individual fetus was not invariably successful. Alternatively, it is known that immunological response is variable. These limitations aside, the results confirm that relative unresponsiveness to HSA can be induced by in utero injection of whole blood. More recently we have demonstrated that this is also the case when pure HSA is injected alone (unpublished data), and again after five subsequent challenges unresponsiveness was maintained. In the controls there was evidence of an increasing rate of elimination of HSA in subsequent challenges compared with the primary challenge (table 1).

Permanent sustained tolerance to HSA was also

FIG 1 Elimination of \(^{125}\)I-labelled HSA in six individual rabbits.

TABLE 1 Elimination of \(^{125}\)I-labelled HSA in normal and in utero injected rabbits.

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Controls (6 animals)</th>
<th>Tests* (6 animals)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>50% fall-off (days)</td>
<td>50% fall-off (days)</td>
</tr>
<tr>
<td>Range 1</td>
<td>80 - 2 - 10</td>
<td>Range 1 - 80 - 2 - 75</td>
</tr>
<tr>
<td>Median</td>
<td>1</td>
<td>Median 1 - 90</td>
</tr>
<tr>
<td>Mean</td>
<td>1 - 80 ± 0 - 50</td>
<td>Mean 2 - 00 ± 0 - 70</td>
</tr>
<tr>
<td>100% fall-off (days)</td>
<td>100% fall-off (days)</td>
<td></td>
</tr>
<tr>
<td>Range 0</td>
<td>8 - 0 - 10 - 9</td>
<td>Range 1 - 14 - 0 - 22 - 0</td>
</tr>
<tr>
<td>Median</td>
<td>9 - 80</td>
<td>Median 19 - 5</td>
</tr>
<tr>
<td>Mean</td>
<td>9 - 7 ± 2 - 2</td>
<td>Mean 18 - 8 ± 6 - 0</td>
</tr>
<tr>
<td>50% fall-off (days)</td>
<td>50% fall-off (days)</td>
<td></td>
</tr>
<tr>
<td>Range 0</td>
<td>60 - 1 - 96</td>
<td>Range 1 - 82 - 2 - 80</td>
</tr>
<tr>
<td>Median</td>
<td>1 - 60</td>
<td>Median 2 - 00</td>
</tr>
<tr>
<td>Mean</td>
<td>1 - 40 ± 1 - 30</td>
<td>Mean 2 - 10 - 2 - 0 - 70</td>
</tr>
<tr>
<td>100% fall-off (days)</td>
<td>100% fall-off (days)</td>
<td></td>
</tr>
<tr>
<td>Range 3</td>
<td>10 - 10 - 00</td>
<td>Range 19 - 0 - 22 - 0</td>
</tr>
<tr>
<td>Median</td>
<td>8 - 90</td>
<td>Median 20 - 2</td>
</tr>
<tr>
<td>Mean</td>
<td>7 - 20 ± 6 - 20</td>
<td>Mean 20 - 3 ± 2 - 70</td>
</tr>
</tbody>
</table>

*In utero injected.
† Accumulated data of five challenges with \(^{125}\)I-labelled HSA.
Immuneological tolerance induced by in utero injection

seen in the sole in utero injected monkey which was tested. No apparent difference could be demonstrated between the in utero injected and control monkey following the 1st HSA challenge, but clear differences were seen in the 2nd, 3rd, 4th, and 5th challenges. Although only performed in two animals the fact remains that the overall pattern (fig 2) is very similar to the rabbits (fig 1).

In both the test and control group of rabbits and monkeys a very rapid clearance of HSA was noted during the first 24 hours. This is assumed to be the result of elimination of denatured radiolabelled HSA. In contrast to the in utero injected unresponsive (tolerant) animals, the rapid elimination (post 24 hour) “fall off” in the control animals is presumed to be the result of increasing sensitisation to HSA challenges. It might be argued that we only examined one in utero injected monkey (and one untreated control). However, the data are included here (1) to record the remarkable similarity with the situation in the rabbits and (2) to show that the phenomenon is not confined to the rabbit but also occurs in other species, species nearer to man, which is important in respect of our basic aim to consider the feasibility of the application of this approach to correct certain deficiency diseases in man.

RABBITS INJECTED WITH ALLOGENEIC BONE MARROW

When challenged with ^51^Cr-labelled donor red cells there were clear differences between the intrauterine injected animals and the untreated controls, as can be seen in table 2, and more easily in fig 3. Quite

![Graph](image-url)

Fig 3 Elimination of ^51^Cr-labelled red cells grafted in utero with corresponding allogeneic bone marrow cells.

<table>
<thead>
<tr>
<th>TABLE 2</th>
<th>Elimination of ^51^Cr-labelled allogeneic RBC in in utero injected rabbits.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Challenges</td>
<td>Controls (3 animals)</td>
</tr>
<tr>
<td>1st</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>Mean 8-00</td>
</tr>
<tr>
<td>7-51-8.42</td>
<td>7.97 ± 0.450</td>
</tr>
<tr>
<td>Median</td>
<td>8.00</td>
</tr>
<tr>
<td>100% fall-off (days)</td>
<td>Range 48-0.0-56.34</td>
</tr>
<tr>
<td>Median</td>
<td>53.60</td>
</tr>
<tr>
<td>Mean 52-0-3.94</td>
<td>58-66*2</td>
</tr>
<tr>
<td>Mean</td>
<td>52.0</td>
</tr>
<tr>
<td>50% fall-off (days)</td>
<td>Range 8.20-3.80</td>
</tr>
<tr>
<td>Median</td>
<td>50.0</td>
</tr>
<tr>
<td>Mean 52.0-3.94</td>
<td>58-66*2</td>
</tr>
<tr>
<td>Median</td>
<td>18.0</td>
</tr>
<tr>
<td>Mean</td>
<td>19.0 ± 0.34</td>
</tr>
</tbody>
</table>

*In utero injected.
†Accumulated data of three challenges.
clearly, the red cell survival was increased almost four-fold in the intrauterine grafted animals, and it must be assumed that the relative accelerated loss of labelled red cells in controls represents immune clearance. Tolerance to at least the donor red cell must be assumed to result from intrauterine bone marrow grafting.

Discussion

Fetal blood sampling is currently being employed in the diagnosis of various human blood diseases and perhaps the commonest is thalassaemia major. Our primary interest in tolerance to in utero grafts is the possibility of correction of such diseases by mid-gestational grafting of normal adult haematopoietic stem cells. Hopefully these cells will survive and, for example, in the case of thalassaemia major, proliferate and provide erythroid cells with normal haemoglobin. Even if the primary graft is not established, there is always the opportunity of a secondary graft in the postnatal period, since we anticipate having achieved tolerance. In this context it is of interest to note the findings of Rayfield and his colleagues. They showed that whereas lymphoid cells obtained from the human fetus before 18 weeks of in utero life were capable of reacting in an MLR, cytotoxicity could not be demonstrated.

This is encouraging in respect to fetal grafting in humans at around 16 weeks' gestation, the time at which diagnosis of thalassaemia is usually performed. The implication is that the graft would be accepted and hopefully the child would be rendered tolerant. Here it would be an advantage to use the parents as stem cell graft donors. If secondary grafting was required this could be effected from either parent or from any unaffected sib. Of course there would be no question of this procedure being considered genetic engineering.

Although successful establishment of tolerance to the graft is anticipated to preclude or reduce the chance of rejection of bone marrow graft, there is always the problem of graft-versus-host (GVH) disease. Surprisingly, this does not appear to be a problem in the animals grafted in utero. Bangham et al, for example, showed that even 20×10^7 allogeneic bone marrow or spleen cells or both when injected into mid-gestational rhesus monkey fetuses failed to cause any apparent harmful GVH disease. We have obtained other evidence to support this. In both rabbits and baboons (Papio sp) (unpublished data) injection of allogeneic bone marrow cells fail to affect fetal development. The question that remains is if the graft is accepted why does graft-versus-host reactivity not occur? Although we have yet to establish evidence of chimaerism in the animals, results are encouraging and suggest the possibility of employing in utero grafting to correct certain haemopoietic stem cell defects and possibly other inherited defects in man.

Here we have shown that permanent unresponsiveness to xenogeneic albumin can be induced in both rabbits and rhesus monkeys by in utero injection of mid-gestational fetuses, in the former even when retested one year after the final challenge described here (unpublished data). In retrospect tolerance might have been anticipated since there are many cases where unresponsiveness to soluble antigens can be induced by injection in the newborn. The same is true of rabbits born from mothers injected with HSA. In contrast, we have noted no change in unresponsiveness in spite of five challenges over the course of one year and, as mentioned above, even after a gap of an additional year. It may be argued that the repeated frequent challenges of the antigen in this situation may have contributed in some way to the permanency of tolerance. Alternatively, direct in utero injection of the antigen might be more efficient in inducing permanent tolerance. Perhaps of more importance, tolerance to allogeneic red cells can be induced, apparently without any risk to the fetus. The relevance of this observation to the treatment of haemopoietic cell deficiencies in man is quite apparent.

Addendum

Since this study, additional investigation has been performed. Bone marrow cells were injected into fetuses solely in one horn of each of two mid-term does. Results were essentially as above. No effect upon fetal development was noted in any of 11 live fetuses born from the two litters. The animals have all continued to remain alive and well. Moreover, half of the young were found to be tolerant to radio-labelled injected donor red cells on two consecutive challenges. In contrast the remaining (control) animals showed increased red cell destruction, especially apparent on the second challenge.

The conclusion remains the same that tolerance can be induced to red cells, and probably also other haemopoietic cells, by the in utero injection of allogeneic bone marrow and, moreover, without any harmful effect upon the fetus.

We are pleased to acknowledge the advice of our colleagues, Drs Asherson, Billington, Denman, Fisher, Modell, Webster, and Zanelli, and also Professor J Humphrey. We are also grateful for the enthusiastic encouragement of Professor Denys Fairweather who has supported this project.
Immunological tolerance induced by in utero injection

References

17 Humphrey JH. Immunological unresponsiveness to protein antigens in rabbits. Immunology 1964; 7:462–73.

Requests for reprints to Dr R D Barnes, Infant Development, Clinical Research Centre, Watford Road, Harrow, Middlesex HA1 3UJ.
Immunological tolerance induced by in utero injection.

R D Barnes, B E Pottinger, J Marston, P Flecknell, R H Ward, S Kalter and R L Heberling

doi: 10.1136/jmg.20.1.41

Updated information and services can be found at:
http://jmg.bmj.com/content/20/1/41

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/